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Contextual Bandits and Background

Contextual Bandit Protocol

On each of T rounds

1.Observe context xt
2.Choose action at
3.Observe loss ℓt(at, xt).
Goal: Minimize loss!
Applications: online personal-
ization, medical trials, etc.

Surrogate Losses in Supervised Learning
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•Computational: convex/continuous relaxations
of NP-hard problems.

•Statistical: sharper generalization bounds, e.g.,
distribution-dependent, dimension-free, etc.

Why not use surrogate losses in contextual
bandits?

Our results

•New regret bound for margin-based contextual bandits with generic function class.

–Generalizes and improves several prior results.
–Extends sequential complexity bounds for online learning (Rakhlin et al., 2015)
to contextual bandits.

•A new CB algorithm for parametric/convex classes with O(√dT ) regret.
–First efficient bandit-multiclass algorithm with O(√dT ) regret against hinge loss.

•A new analysis of (smoothed) Follow-the-Leader with large non-parametric classes.

Prior Results

•Parametric methods: Simple, efficient, but rely on realizability. Can we get guarantees without realizability?

•Agnostic methods: Few assumptions, but computationally inefficient in general. Can we gain tractability?

•Bandit Multiclass: Surrogate losses common, but loss functions do not generalize to cost-sensitive.

•Statistical/Online Learning: Surrogate losses ubiquitous. Can we extend to partial information?

Surrogate Loss Functions

Setting

•Adversarial contextual bandits with K actions: xt ∈ X , ℓt ∈ [0, 1]K chosen by adaptive adversary.

•Bandit feedback: On each round, choose an action at, incur loss ℓt(a). Only loss of chosen action is observed.
•Standard goal: Compete with policy class Π ∶ X → [K], measured via regret

Regret(T,Π) ≜ T∑
t=1

E [ℓt(at)] − inf
π∈Π

T∑
t=1

E [ℓt(π(xt))] .
•Regressors: We derive Π from a class F ∶ X → RK

=0 of functions (R
K
=0 = {s ∈ RK ∶ ∑a sa = 0}).

•Surrogates: Ramp φγ(s) ≜ min(max(1 + s/γ, 0), 1) and hinge ψγ(s) ≜ max(1 + s/γ, 0). (Pires et al. 2013)
Key observation: Surrogate losses induce randomized policies.

Lemma 1.For s ∈ RK
=0, define a

⋆ = argmaxa sa and πramp(s), πhinge(s) ∈ ∆([K]) by πramp(s)a ∝
φγ(sa) and πhinge(s)a ∝ ψγ(sa). For any ℓ ∈ RK+ we have

ℓ(a⋆) ≤ ⟨πramp(s), ℓ⟩ ≤ ⟨ℓ, φγ(s)⟩ ≤∑
a

ℓ(a)1{sa ≥ −γ} and ℓ(a⋆) ≤ ⟨πhinge(s), ℓ⟩ ≤K−1 ⟨ℓ,ψγ(s)⟩ .
• ⟨ℓ, φγ(f(x))⟩ or ⟨ℓ,ψγ(f(x))⟩ serve as surrogate losses for f .

•For ramp, also obtain margin regret : LγT(f) ≜ ∑Tt=1∑a ℓt(a)1{f(xt)a ≥ −γ}.
CC-Ramp CC-Hinge MC-Hinge

⟨ℓ,min(max(1 + s, 0), 1)⟩ ⟨ℓ,max(1 + s, 0)⟩ —

∑y≠y⋆min(max(1 + sy, 0), 1) ∑y≠y⋆max(1 + sy, 0) max(1 − (sy⋆ −maxy≠y⋆ sy), 0)
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Achievable Regret Bounds

Theorem 2.For any constants β > α > 0, smoothing parameter µ ∈ (0, 1) and margin pa-
rameter γ > 0 there exists an adversarial CB strategy with expected loss bounded as:

E [ T∑
t=1
ℓt(at)] ≤ inf

f∈F E [LγT(f)] + 4
√
2K2T logN∞,∞(β/2,F , T ) + µKT

+ 8

µ
logN∞,∞(β/2,F , T ) + 1

γ

⎛⎝3e2αKT + 24e
√
KT

µ
∫ β

α

√
logN∞,∞(ε,F , T )dε⎞⎠

where N∞,∞(ε,F , T ) is the L∞/ℓ∞-sequential covering number for F .
•Also yields a policy regret bound, against policy class derived from F .
•Requires knowledge of margin parameter γ, unlike uniform guarantees for statistical learning.

Class Rate Notes

Finite classes K
√
T log ∣F ∣ Can get optimal O(

√
KT log ∣Π∣) policy regret with our proof.

Parametric K
√
Td log(KT /γ) logN∞,∞(ε,F , T )∝ d log(1/ε), as in the LinUCB setting.

Rademacher K(R(F , T )/γ)2/3T 1/3 Involves Rademacher complexity of scalar restrictions of benchmark.
For full information, rate is Θ(maxaR(F ∣a, T )).

Linear classes K(T /γ)2/3 Generalizes Banditron to smooth Banach spaces.

Nonparametric (KT )p+2p+4γ− 2p
p+4 logN∞,∞(ε,F , T )∝ ε−p, p ∈ (0, 2]

Nonparametric (KT ) p
p+1γ− p

p+1 logN∞,∞(ε,F , T )∝ ε−p, p ≥ 2

Lipschitz CB. For X = [0, 1]p, the class F of Lipschitz func-

tions has sequential entropy growth ε−p. We obtain O(T p+2
p+4∨ p

p+1)
margin/policy regret, improving the O(T p+1

p+2) bound of Cesa-
Bianchi et al. (2017).

Right: exponent on T vs. entropy exponent. “Square loss” de-
notes optimal rate under square-loss realizability (Slivkins, 2011).
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Proof Ideas

Full information bound
If full info bound involves local norms, can obtain bandit bound via importance weighting. E.g., Exp4

Regret(T,Π) ≤ η
2

T∑
t=1

Eπ∼pt⟨π(xt), ℓ̂t⟩2 + log(∣Π∣)η

We show existence of full-info algorithm with regret scaling with (1) local norms and (2) sequential covering.
Uses adaptive minimax technique of Foster et al. (2015). We show for G ∶ X → S

V ≜ ⟪sup
xt∈X inf

pt∈∆(S) supℓt Es∼pt⟫
T

t=1
[ T∑
t=1
⟨st, ℓt⟩ − inf

g∈G
T∑
t=1
⟨g(xt), ℓt⟩ −B(p1∶T , ℓ1∶T)] ≤ C,

where B(p1∶T , ℓ1∶T) = ∑Tt=1 η1 ∥ℓt∥1 + η2 ∥ℓt∥21 + 2η3Es∼pt ⟨s, ℓt⟩2 and C depends only on η1∶3 and N∞,∞(G).
- Yields benign dependence on loss range and Dudley-type integral with sequential metric entropy.
- To give main theorem, use G = φγ ○F .
Bandit Reduction

•Use full info algorithm with class G = φγ ○F , to obtain pt ∈ ∆(S)
•Define Pt(a) = Es∼pt s(a)∑a′ s(a′) sample at ∼ P µ

t ≜ (1 −Kµ)Pt + µ)
•Feed importance weighted loss ℓ̂t(a) = ℓt(at)1{at = a} /pt(a) to full-info algorithm.

•Challenge: Variance control for surrogate losses. Solution: Randomized policies.

Lemma 3 (Variance control for randomized policies).With supx,f ∥f(x)∥∞ ≤ B we have

Eat∼P µ
t
[Est∼pt ⟨st, ℓ̂t⟩2] ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K, for S ⊂ ∆(A).
K2, for S = φγ ○F .
(1 + B

γ
)2K2, for S = ψγ ○F .

Hinge-LMC

Key Insights

•Stationary distribution of LMC Markov chain is Exponential weights distribution.

•With hinge surrogate and convexity, sampling problem is log-concave ⇒ efficient algorithm!

•Sampler uses randomized smoothing and ℓ2 regularization for strong convexity.

•Also use geometric resampling to estimate importance weight.

Algorithm 1 Hinge-LMC

Input: Class Θ, learning rate η, rounds T , margin γ.
Define w0(θ) = 1 for all θ ∈ Θ.
for t = 1, . . . , T do

θt ← LMC(ηwt−1).
Set pt(⋅; θt)∝ ψγ(f(xt; θt)), pµt (⋅; θt) = (1−Kµ)pt+µ.
Receive xt, play at ∼ pµt (⋅; θt), observe ℓt(at).
for m = 1, . . . ,M do

θ̃t ← LMC(ηwt−1). // Geometric resampling.

Sample ãt ∼ pµt (⋅; θ̃t), if ãt = at, break
end for
Set mt =m, and ℓ̃t(a) = ℓt(at) ⋅mt1{at = a}
Update wt(θ)← wt−1(θ) + ⟨ℓ̃t, ψγ(f(xt; θ))⟩

end for

Algorithm 2 Langevin Monte Carlo (LMC)
Input: Function F , parameters m,u,λ,N,α.
Set θ̃0 ← 0 ∈ Rd

for k = 1, . . . ,N do

Draw z1, . . . , zm
iid∼ N(0, u2Id) and define

F̃k(θ) = 1
m∑mi=1F (θ + zi) + λ

2∥θ∥22
Draw ξk ∼ N(0, Id) and update

θ̃k ← PΘ (θ̃k−1 − α
2
∇F̃k(θ̃k−1) +√αξk) .

end for
Return θ̃N .

Theorem 4.Assume F is parametrized by a compact convex set Θ ⊂ Rd, f(x; θ) is convex
and L-Lipschitz in θ, and supx,θ ∥f(x; θ)∥∞ ≤ B. For any γ, Hinge-LMC guarantees

E [ T∑
t=1
ℓt(at)] −min

θ∈Θ
E [ 1

K

T∑
t=1
⟨ℓt, ψγ(f(xt; θ))⟩] ≤ Õ (B

γ

√
dT)

Moreover the running time is Õ (d14T 10

K2γ2
).

•Bandit Multiclass: First efficient
√
dT algorithm against a loss without curvature!

•Realizability: If θ⋆ has f(x; θ⋆)a =Kγ1{ℓ(a) ≤ mina′ ℓ(a′)} − γ then obtain B
γ

√
dT policy regret.

•Practical Aspects: Likely can significantly improve runtime and extend to non-convex classes.

Smooth-FTL and Lipschitz CB

Setting: Stochastic contextual bandits, (xt, ℓt) ∼ D iid on each round.
Algorithm: Epoch based, with epoch m lasts for nm = 2m rounds.
To begin mth epoch, compute empirical importance-weighted hinge-loss minimizer:

f̂m−1 = argmin
f∈F

nm−1∑
τ=nm−1

⟨ℓ̂τ , ψγ(f(xτ))⟩ .
Note, uses only data from previous epoch.
For all rounds in mth epoch, play as (1 −Kµ)πhinge(f̂m−1(xt)) + µ. (Essentially ǫ-greedy.)

Theorem 5.Suppose that F satisfies logN∞,∞(ε,F , T ) ∝ ε−p for p ≥ 2. Then for stochastic
CB, SmoothFTL guarantees

E [ T∑
t=1
ℓt(at)] −min

f∈F
T

K
E [⟨ℓ,ψγ(f(x)⟩] ≤ Õ ((T /γ) p

p+1)
•Oracle Efficient: Makes log(T ) calls to hinge-loss minimization oracle.

•Lipschitz CB: Also yields T
p
p+1 algorithm for Lipschitz CB with p-dimensional context space and finite

action space. Yields best known guarantee for Lipschitz CB.

• (Sub)optimality? Matches information-theoretic results, but ǫ-greedy typically suboptimal.
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