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Abstract
This thesis explores the power of interactivity in unsupervised machine learning prob-

lems. Interactive algorithms employ feedback driven measurements to mitigate the cost of
data acquisition and consequently enable statistical analysis in otherwise intractable settings.
Unsupervised learning methods are fundamental tools across a variety of domains, and inter-
active procedures promise to broaden the scope of statistical analysis.

We develop interactive mechanisms and inference procedures for three unsupervised prob-
lems: subspace learning, clustering, and tree metric learning. Our theoretical and empirical
analysis shows that interactivity can bring both statistical and computational improvements
over non-interactive approaches. In addition, an over-arching thread of this thesis is that in-
teractive learning is particularly powerful for non-uniform datasets, where non-uniformity is
quantified differently in each setting.

We first study the subspace learning problem, where the goal is to recover or approxi-
mate the principal subspace of a collection of partially observed data points. We propose
statistically and computationally appealing interactive algorithms for both the matrix com-
pletion problem, where the data points lie in a low dimensional subspace, and the matrix
approximation problem, where one must approximate the principal components of an arbi-
trary collection of points. We measure uniformity with the notion of incoherence, which is
known to be necessary for non-interactive algorithms, and we show that our feedback-driven
algorithms perform well under much milder incoherence assumptions.

We next consider clustering a dataset represented by a partially observed similarity ma-
trix. We propose an interactive procedure for recovering a hierarchical clustering from a small
number of carefully selected similarity measurements. The algorithm exploits non-uniformity
of cluster size by using few measurements to recover larger clusters and then focusing mea-
surements on identifying the smaller structures. In addition to coming with strong statistical
and computational guarantees, this algorithm performs well in practice.

Finally we consider a specific metric learning problem, where we compute a latent tree
metric to approximate distances over a point set. This problem is motivated by applications in
network tomography, where the goal is to approximate the network structure using only mea-
surements between pairs of end hosts. Our algorithms use an interactively chosen subset of
the pairwise distances to learn the latent tree metric while being robust to either additive noise
or a small number of arbitrarily corrupted distances. As before, we leverage non-uniformity
inherent in the tree metric structure to achieve low sample complexity.

Throughout we complement our theoretical results with empirical evaluations.
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Chapter 1

Introduction

Interactive learning is a framework for statistical analysis in which the inference procedure interacts with
the data acquisition mechanism and makes feedback-driven measurements. This framework, which is also
referred to as active learning, adaptive sampling, or adaptive sensing, has become increasing popular in
recent years as it often significantly reduces overhead associated with data collection. On both theoretical
and empirical fronts, interactive learning has been successfully applied to a variety of supervised machine
learning [7, 8, 9, 10, 13, 14, 27, 28, 29, 45, 46, 47] and signal processing problems [5, 49, 60, 63, 76].
However, interactive approaches have not experienced the same degree of success for unsupervised learn-
ing, and our understanding in this area is quite limited. This thesis addresses this deficiency with an
exploration of the power of interactive approaches for unsupervised learning.

We show that interactive learning offers two distinct advantages. The first is that interactive approaches
are particularly powerful when the data exhibits high degrees of non-uniformity. Interactive mechanisms
can identify these non-uniformities and focus measurements to accurately capture these aspects of the
data. The second is that interactive algorithms are often both theoretically and empirically faster than
non-interactive ones. Both of these claims are supported by several examples in this thesis.

1.1 Overview

In this chapter we summarize completed work, proposed work and a timeline for the thesis. In Chapter 2,
we begin our study of subspace learning problems by presenting our results on matrix and tensor comple-
tion. We address the noisy subspace learning problem in Chapter 3 where we develop an interactive matrix
approximation algorithm and characterize its performance. In Chapter 4, we turn to the clustering prob-
lem, presenting a recursive spectral algorithm for hierarchical clustering. We study the tradeoff between
signal-to-noise ratio and measurement complexity in this setting and compare our approach with non-
interactive clustering algorithms. Finally, in Chapter 5, we address the latent tree metric learning problem.
We present algorithms for both additive and sparse adversarial noise models and characterize their mea-
surement complexity, statistical performance, and running time. Throughout we present empirical results
to complement our theoretical findings.

1.2 Completed Work

1. Matrix Completion: We study low rank matrix and tensor completion and propose novel algo-
rithms that employ interactive sampling to obtain strong performance guarantees. Our algorithms
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interactively identify entries that are highly informative for learning the column space of the ma-
trix or tensor and, consequently, they succeed even when the row space is highly coherent (non-
uniform), in contrast with non-interactive approaches. We show that one can exactly recover a n⇥n
matrix of rank r from merely ⌦(nr log2(r)) matrix entries using an algorithm with running time
that is linear in the matrix size, n. In addition to significantly relaxing incoherence assumptions, this
algorithm nearly matches the best known sample complexity and is the fastest known algorithm for
matrix completion. We also show that one can recover an order T tensor using ⌦(nrT�1T 2

log

2
(r))

entries, a significant improvement on recent non-interactive approaches. We complement our study
with simulations that verify our theory and demonstrate the scalability of our algorithms.

2. Matrix Approximation: We consider the problem of constructing a low rank approximation to a
high-rank input matrix from interactively sampled matrix entries. We propose a simple algorithm
that truncates the singular value decomposition of a zero-filled version of the input matrix. The
algorithm computes an approximation that is nearly as good as the best rank-r approximation to
the input matrix using O(nrµ log

2
(n)) samples, where µ is a coherence parameter on the matrix

columns. We eliminate uniformity assumptions on the row space of the matrix while achieving
similar statistical and computational performance to non-interactive methods.

3. Clustering: We develop an adaptive sampling procedure for recovering a binary hierarchical clus-
tering from pairwise similarity information. The algorithm runs spectral clustering on a subsampled
version of the similarity matrix to resolve the coarse partitions of the hierarchy and then focuses
measurements to resolve the finer partitions. We show that this algorithm recovers all clusters of
size ⌦(log n) using O(n log

2 n) similarities and runs in O(n log

3 n) time for a dataset of n objects.
In comparison, hierarchical spectral clustering on the fully observed similarity matrix achieves the
same resolution but uses all O(n2

) similarities and runs in O(n2
) time [4]. Through extensive

experimentation, we also demonstrate that this approach is practically appealing.

4. Metric Learning: Motivated by work suggesting that packet latencies in a communication network
can be well-approximated by tree metrics, we present two algorithms that use selective pairwise dis-
tance measurements between peripheral nodes to construct a latent tree whose end-to-end distances
approximate those in the network. Our first algorithm accommodates measurements perturbed by
additive noise, while our second considers a novel noise model that captures missing measurements
and the network’s deviations from a tree topology. Both algorithms provably use O(n polylog n)
pairwise measurements to construct a tree approximation on n end hosts and run in nearly linear
time. We present simulated and real-world experiments to evaluate both algorithms.

1.3 Proposed Work

1. Fundamental limits for passive algorithms: A characterization of the fundamental limits for non-
interactive algorithms in many of the problems introduced earlier has remained unresolved. Such
a characterization is essential to demonstrating the power of interactive learning. In matrix com-
pletion, we know that passive algorithms have high sample complexity in the absence of row-space
incoherence, a setting where adaptive sampling is known to succeed [58]. Similarly, lower bounds
against non-interactive uniform sampling are known for matrix approximation problems [55, 66].
However, for hierarchical clustering, latent tree metric learning, and matrix approximation with
other sampling distributions, these questions are still open. We aim to establish these fundamental
limits for non-interactive algorithms, bolstering the case for interactive ones.

2. Deeper analysis of interactive clustering: There are many opportunities for improvements and
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extensions to our work on interactive clustering. Our current analysis is restricted to binary hierar-
chies and fairly balanced cluster sizes at each level of the hierarchy. One avenue to eliminate these
restrictions is to recursively apply an algorithm for k-way clustering that succeeds in the presence
of non-uniform cluster sizes at each level of the hierarchy. Recently, a peeling-style algorithm that
finds large clusters, removes them, and then focuses on finding smaller ones, has been shown to suc-
cessfully recover non-uniform k-way clusterings in the graph clustering setting [1]. We conjecture
that a similar algorithm will succeed in the noisy similarity setting. We aim to apply this algorithm
to handle non-binary hierarchies with non-uniform cluster sizes.

3. General purpose algorithms for Matrix Approximation and Clustering: Our current approach
for matrix approximation is not fully harnessing the power of adaptive sampling, and we conjecture
that there is room for substantial improvements. Specifically, while the scaling between the number
of measurements, the target rank, and the problem size match related results, the dependence on the
error tolerance is polynomially worse. The algorithm only uses two rounds of measurement, and we
suspect that one can achieve better performance with more interaction. We propose an algorithm
that first approximates the leading direction of the matrix and then iteratively focuses measurements
on the residual to capture the remaining directions.
Interestingly, the algorithm bears striking similarity to our proposal for the hierarchical and flat
clustering problems described before. We therefore aim to analyze this algorithm in both the matrix
approximation and the clustering settings.

4. Adaptive Compressive Matrix Approximation: It is also natural to consider the compressive
version of the matrix approximation problem. Here, the matrix is observed through a sequence
of (interactively) chosen linear measurements and as before, the goal is to compete with the best
low-rank approximation. We have analyzed a non-interactive algorithm that works best when the
columns of the matrix all have similar norm [61]. As in previous examples, we aim to show that
this uniformity assumption can be relaxed via adaptive sampling.

1.4 Exploratory Work

1. Lower bounds for interactive algorithms: While the construction of an adaptive algorithm, cou-
pled with a lower bound against non-interactive algorithms, suffices to establish the advantages of
adaptivity, it is also interesting to understand the fundamental limits of this framework. Results of
this flavor would not only certify optimality or sub-optimality of our algorithms, but would provide
a comprehensive characterization of interactive algorithms for unsupervised learning. While lower
bounds for adaptive algorithms have been established for some signal processing problems [2],
bringing these to unsupervised learning appears to be challenging.

2. Interactive Approaches in other metric learning problems Our work on metric learning con-
siders one particular setting, namely that of recovering a latent tree metric, which is inspired by
network tomography applications. However, there is a wide class of other metric structures, such
as euclidean or other finite-dimensional `

p

metrics and geodesics on smooth manifolds, for which
our techniques are not applicable. It is well known that subsampling approaches can yield good
approximations for some of these problems, and therefore it seems interesting to explore interactive
approaches [30]. Understanding the noise tolerance of both passive and interactive algorithms for
these problems is another direction for future research.
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1.5 Thesis Statement

In this thesis, I aim to demonstrate the statistical and computational power of interactivity in unsupervised
learning with specific focus on settings with high degrees of non-uniformity. Formally,

“Interactive data acquisition facilitates statistically and computationally efficient unsupervised learn-
ing algorithms that are particularly well-suited to handle non-uniform datasets.”

1.6 Timeline

Below is a timeline for the completion of my proposed work. I plan to graduate in the Summer of 2015.
1. Fall 2014: Thesis Proposal.

2. Fall 2014: Analysis of improved matrix approximation algorithm. Conference submission or im-
provements to existing JMLR submission.

3. Fall 2014: Lower bounds for matrix approximation.

4. Spring 2015: Interactive flat clustering.

5. Spring 2015: Adaptive compressive matrix approximation. Journal submission.

6. Summer 2015: Thesis writing and defense.

1.7 Acknowledgements

The work in this document is in collaboration with my advisor, Aarti Singh, and peers, Martin Azizyan,
Sivaraman Balakrishnan, and Min Xu. I am also grateful to the National Science Foundation, who sup-
ported this work through an NSF Graduate Research Fellowship.
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Chapter 2

Matrix and Tensor Completion

2.1 Introduction and Related Work

In the matrix completion problem, we would like to recover a low rank matrix after observing only a small
fraction of its entries. In this chapter, we propose interactive algorithms for low rank matrix completion
and the closely-related tensor completion problems.

Our study is motivated not only by prior theoretical results in favor of adaptive sensing but also by
several applications where adaptive sensing is feasible. In recommender systems, obtaining a measure-
ment amounts to asking a user about an item, an interaction that has been deployed in production systems.
Another application pertains to network tomography, where a network operator is interested in inferring
latencies between hosts in a communication network while injecting a few packets into the network. The
operator, being in control of the network, can adaptively sample the matrix of pair-wise latencies, poten-
tially reducing the total number of measurements.

A theme of this work is that interactive or adaptive sampling allows one to relax incoherence as-
sumptions pervasive in the matrix completion literature. Previous analyses show that if the energy of
the matrix is spread out fairly uniformly across its coordinates, then passive uniform-at-random samples
suffice for completion. In contrast, our work shows that adaptive sampling algorithms can focus measure-
ments appropriately to solve these problems even if the energy is non-uniformly distributed. Handling
non-uniformity is essential in a variety of problems involving outliers, for example network monitoring
problems with anomalous hosts, or recommendation problems with popular items or highly active users.
This is a setting where passive algorithms provably fail, as we show.

Due to its widespread applicability, the matrix completion problem has received considerable attention
in recent years. A series of papers [20, 21, 24, 42, 72] establish that ⌦(nrµ0 log

2
(n)) randomly drawn

samples are sufficient for the nuclear norm minimization program to exactly identify an n⇥n matrix with
rank r. Here µ0 is the coherence parameter, which measures the uniformity of the row and column spaces
of the matrix. Candès and Tao [21] show that nuclear norm minimization is essentially optimal with a
⌦(nrµ0 log(n)) lower bound for uniform-at-random sampling.

There is also a line of work analyzing alternating minimization-style procedures for the matrix comple-
tion problem [48, 50, 53]. While the alternating minimization algorithm is computationally more elegant
than nuclear norm minimization, the best sample complexity bounds to-date are either worse by at least a
cubic factor in the rank r or have undesirable dependence on the matrix condition number [53]. In practice
however, alternating minimization performs as well as nuclear norm minimization, so this sub-optimality
appears to be an artifact of the analysis.

In a similar spirit to our work, Chen et al. [25] developed an interactive algorithm which succeeds in
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the absence of row-space incoherence using ⌦(nrµ0 log
2
(n)) samples. In comparison, we operate under

the same assumption but achieve an improved sample complexity of ⌦(nrµ0 log
2
(r)). A recent paper

of Jin and Zhu [51] further improves slightly on this bound, achieving ⌦(nr log(r)) sample complexity,
but they assume that both the row and column space are incoherent. Interestingly, their algorithm uses
non-interactive but non-uniform sampling.

Tensor completion, a natural generalization of matrix completion, is less studied. One challenge stems
from the NP-hardness of computing most tensor decompositions, pushing researchers to study alternative
structure-inducing norms in lieu of the nuclear norm [41, 65, 77, 78, 79, 82]. Of these, only Mu et
al. [65] and Yuan and Zhang [82] provide sample complexity bounds for the noiseless setting. Mu et
al. [65] show that ⌦(rnT/2

) random linear measurements suffice to recover a rank r order-T tensor. Yuan
and Zhang [82] instead show that ⌦(r1/2n3/2

) entries suffice to recover a rank r third-order tensor with
incoherent subspaces, provided the rank is small. In contrast, the sample complexity of our algorithm is
linear in dimension n, improving significantly on these non-interactive results.

In this chapter we make the following contributions:
1. For the matrix completion problem, we give a simple algorithm that exactly recovers an n⇥ n rank

r matrix using ⌦(nrµ0 log
2
(r)) measurements where µ0 is the coherence parameter on the column

space of the matrix. This algorithm outperforms all existing results on matrix completion both in
terms of sample complexity (with the exception of [51]) and in the fact that we place no assumptions
on the row space of the matrix. The algorithm is extremely simple, runs in O(nr2) time, and can be
implemented in one pass over the columns of the matrix.

2. We complement this sufficient condition with a lower bound showing that in the absence of row-
space incoherence, any passive scheme must see ⌦(n2

) entries. This concretely demonstrates the
power of adaptivity in the matrix completion problem.

3. For the tensor completion problem, we establish that ⌦(nrT�1T 2
log r) adaptively chosen samples

are sufficient for recovering a n⇥ . . .⇥ n order T tensor of rank r.

2.2 Main Results

Before proceeding, we establish some notation. In the matrix completion problem we are interested in
recovering, a n ⇥ n matrix X of rank at most r from a set of at most M observations1. We focus on the
0/1 loss; given an estimator ˆX for X , we would like to bound the probability of error:

R01(
ˆX) , P

⇣
ˆX 6= X

⌘
. (2.1)

Apart from the observation budget M and the rank r, the other main quantity governing the difficulty
of this problem is the subspace coherence parameter. For an r dimensional subspace U of Rn, define

µ(U) =

n

r
max

i2[n]
kP

U

e
i

k22,

which is the standard measure of subspace coherence [72]. The quantity µ(U), which is bounded between
1 and n/r, measures how correlated the subspace U is with any single standard basis element. If U is the
column space of X and µ0 , µ(U) is small, then the energy of the matrix is spread out fairly uniformly
across the rows of the matrix, although it can be non-uniformly distributed across the columns. We will
see that the parameter µ0 controls the sample complexity of our adaptive procedure.

1All results also apply to non-square matrices, with appropriate modifications.
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The definitions translate naturally to the tensor setting. Let M 2 Rn⇥...⇥n denote an order T tensor
that can be decomposed into a sum of r rank one tensors The mode-t sub-tensors of M, denoted by M(t)

i

,
are order T � 1 tensors obtained by fixing the i-th coordinate of the t-th mode. For example, if M is an
order 3 tensor, then M(3)

i

are the frontal slices. The subspaces associated with the tensor are denote A(t)

which is the span of the mode-t fibers (i.e. columns, rows, etc.).
Equipped with these definitions, we now describe our interactive matrix completion algorithm. The

procedure streams the columns of the matrix X into memory and iteratively adds directions to an estimate
for the column space of X . The algorithm maintains a subspace U and, when processing the t-th column
x
t

, estimates the norm of the orthogonal projection P
U

?x
t

from a subsampled version of x
t

. If the estimate
is non-zero, the algorithm asks for the remaining entries of x

t

and adds the new direction to the subspace
U . Otherwise, the algorithm can complete the column by solving an over-determined linear system.

The main ingredient of the algorithm is the estimator for the quantity kP
U

?xk22 when the vector x is
partially observed. If x is subsampled to the coordinates ⌦ ⇢ [n] of size m, denoted by x⌦, then we also
subsample the rows of an orthonormal basis for U to form U⌦, and estimate with
k(I�U⌦(U

T

⌦U⌦)
†UT

⌦ )x⌦k22. By analyzing this estimator and the recovery procedure, we are able to prove
the following theorem characterizing the statistical and computational performance of the algorithm 2:
Theorem 1. Let X 2 Rn⇥n be a matrix of rank r whose column space U has coherence µ(U)  µ0.
Then the interactive matrix completion algorithm, when sampling m entries per column, has risk:

R01(
ˆX)  10r2 exp

⇢
�
r

m

32rµ0

�
(2.2)

provided that m � 4rµ0 log(2r/�). Equivalently, whenever m � 32rµ0 log
2
(10r2/�), we have R01(

ˆX) 
�. The sample complexity is nr + nm and the running time is O(nmr + nr2 + r3m).

In other words, our algorithm exactly recovers the input matrix using ⌦(nrµ0 log
2
(r)) samples and

in O(npoly(r)) time. To the best of our knowledge, this result provides not only the best sample com-
plexity (with the exception of [51]), but also the best computational complexity for the matrix completion
problem. Moreover, this algorithm does not require row-space incoherence, in contrast with all existing
passive approaches. As incoherence is a measure of data uniformity, this supports all facets of our thesis.

In fact, row-space incoherence is necessary for passive sampling to achieve non-trivial sample com-
plexity bounds as shown in the following result:
Theorem 2 (Informal). For any passive sampling strategy, if µ0 � c > 1, then M = ⌦((n2 � nr))
samples are necessary to recover an n⇥ n matrix of rank r and column incoherence bounded by µ0.

This theorem, coupled with Theorem 1, shows strong separation between interactive and non-interactive
approaches for matrix completion. The proof is based on minimax theory, where for any sampling strat-
egy, we consider the probability of error on the worst case input matrix for that strategy. This minimax
risk is lower bounded by placing a uniform distribution on a specific family of input matrices and then by
counting the number of matrices that are indistinguishable from a given set of samples.

For tensors, the algorithm becomes recursive in nature. At the outer level of the recursion, the algo-
rithm maintains a candidate subspace U for the mode T sub-tensors M(T )

i

. For each of these sub-tensors,
we test whether M(T )

i

lives in U and recursively complete that sub-tensor if it does not. Once we complete
the sub-tensor, we add it to U and proceed at the outer level. When the sub-tensor itself is just a column;
we observe the columns in its entirety. We are able to establish the following performance guarantee:
Theorem 3 (Informal). Suppose that all but the last subspace A(T ) have coherence bounded above by µ0.
Then the recursive algorithm recovers a rank r order-T tensor using O(T 2n(rµ0)

T�1
log

2
(Tr)) samples.

2All proofs and algorithm details are presented in the original publications [57, 58].

7



0 50 100 150
0

0.2

0.4

0.6

0.8

1

Number of Samples/Column (np)

P
ro

b
a

b
ili

ty
 o

f 
R

e
co

ve
ry

 

 

n=250
n=500
n=750
n=1000

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Rescaled Sampling Probability (np/log(n))

P
ro

b
a

b
ili

ty
 o

f 
R

e
co

ve
ry

 

 

n=100
n=150
n=200

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Samples/Column (p)

P
ro

b
a

b
ili

ty
 o

f 
R

e
co

ve
ry

 

 

Adapt mu=1
Adapt mu=2
SVT mu=1
SVT mu=2

Figure 2.1: Left: Probability of recovery for the interactive MC algorithm as a function of the number
of samples per column. Center: Probability of recovery for the SVT algorithm as a function of rescaled
sampling probability np/ log n. Right: Probability of recovery for both SVT and the interactive algorithm
on matrices with coherent row space.

2.2.1 Simulations

We now turn to empirical results. In Figure 2.1 we present some simulations comparing our algorithm
with the Singular Value Thresholding algorithm of [18]. In the first plot, we record the probability of
exact recovery as a function of the number of samples per column m = np for matrices of varying size n.
The fact that these curves line up demonstrates that sample complexity scales linearly with problem size,
so that the number of samples per column remains constant. On the other hand, for the SVT algorithm
(second plot), one must instead plot the success probability as a function of np/ log(n) for the curves to
line up, which suggests that the sample complexity for this algorithm scales with n log(n) (ignoring other
parameters). In the last plot, we record the success probability versus sampling probability on matrices
with maximally coherent row spaces. The results of this simulation clearly demonstrate that our algorithm
can tolerate coherent row spaces while SVT cannot.

To confirm the computational improvements, we ran our matrix completion algorithm on large-scale
matrices and compared with SVT 3. As a concrete example, recovering a 10000 ⇥ 10000 matrix of rank
100 takes close to 2 hours with SVT, while it takes less than 5 minutes with our algorithm.

2.3 Future Work

There are two important avenues for future work. The first is to develop a more practical interactive sam-
pling algorithm. It is often not tractable to observe a column in its entirety, and this limits the applicability
of our current algorithm. While we have established the power of interactivity for matrix completion, it
would be interesting to design more practical procedures that retain the favorable statistical and computa-
tional properties of our algorithm.

Another worthwhile direction is to address the question of optimality for the tensor completion prob-
lem. On one hand, it seems possible to adapt the proof of Theorem 2 to the tensor case to establish a lower
bound against passive algorithms. However, since a rank r order T tensor has nrT parameters, it seems
likely that our adaptive algorithm (Theorem 3) has suboptimal dependence on both r and T , and it would
be interesting to understand whether this is fundamental or if it can be addressed with a better algorithm.

3See Table 1 of [57] and Table 5.1 of [18].
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Chapter 3

Matrix Approximation

3.1 Introduction and Related Work

In the matrix approximation problem, we aim to to find a low rank matrix that approximates, in a precise
sense, the input, which need not be low rank. This generalizes the matrix completion problem discussed
in Chapter 2. In particular, this setting encompasses the noisy low rank matrix completion problem which
has received considerable attention in recent years [19, 55, 66].

Computing a low rank approximation to a given matrix, more commonly referred to as principal com-
ponents analysis, is a fundamental preprocessing tool in scientific applications. In many such applications,
each entry of the data matrix corresponds to the outcome of an experiment or measurement process. For
example, in biological applications an entry may record the effect of a drug on a particular protein. In
these settings, one can leverage interactivity to guide the sequence of experiments, and our results show
that one can make significantly fewer measurements with little loss in the quality of approximation.

In this chapter, we analyze an algorithm that, after an adaptive sampling phase, approximates the input
matrix by the top r ranks of an appropriately rescaled zero-filled version of the matrix. We show that with
just O(nrµ log

2
(n)) samples, this approximation is competitive with the best rank r approximation of the

n ⇥ n input matrix. Here µ is a coherence parameter on each column of the matrix; as in Chapter 2 we
make no assumptions about the row space of the input. By eliminating this assumption, this algorithm
significantly outperforms existing results on matrix approximation from passively collected samples.

Existing work on matrix approximation with missing data has focused on passively collected samples.
These methods rely on measures of uniformity on both row and column spaces, whether it be incoher-
ence [19, 54], spikiness [66], or a boundedness assumption [55]. In comparison, our adaptive algorithm
achieves low error even on matrices with row spaces that violate these assumptions, a setting where exist-
ing passive algorithms fail.

Several techniques have been proposed for matrix approximation in the fully observed setting, opti-
mizing computational complexity or other objectives. A particularly relevant series of papers is on the
column subset selection (CSS) problem, where the span of several judiciously chosen columns is used
to approximate the principal subspace. One of the best approaches involves sampling columns according
to the statistical leverage scores, which are the norms of the rows of the n ⇥ r matrix formed by the top
r right singular vectors [16, 17, 33]. Unfortunately, this strategy does not seem to apply in the missing
data setting, as the distribution used to sample columns – which are subsequently used to approximate the
matrix – depends on the unobserved input matrix. Approximating this distribution seems to require a very
accurate estimate of the matrix itself, and this high-quality estimate seems difficult to obtain in the missing
data setting. This difficulty also arises with volume sampling [44], another popular approach to CSS; the
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sampling distribution depends on the input matrix and we are not aware of strategies for approximating
this distribution in the missing data setting.

3.2 Main Results

In this section, we highlight our main results for the matrix approximation problem. Given a n⇥n matrix
X , we are interested in approximating the action of X

r

, the matrix formed by zero-ing out all but the
largest r singular values of X . Specifically, we are interested in optimizing the risk R(

ˆX) = kX � ˆXk
F

and aim to achieve excess risk bounds of the form:

R(

ˆX) , kX � ˆXk
F

 kX �X
r

k
F

+ ✏kXk
F

, (3.1)

under the constraint that ˆX has rank at most r. Rescaling the excess risk term by kXk
F

is a form of
normalization that has been used before in the matrix approximation literature [31, 32, 40, 74]. This
bound can be interpreted by dividing by kXk

F

, which shows that ˆX captures almost as large a fraction of
the energy of X as X

r

does.
We parameterize the problem by a quantity related to the usual definition of incoherence:

µ = max

t2[n]

n||x
t

||21
||x||22

, (3.2)

which is the maximal column coherence. It will be important that µ is sufficiently small. We make no
assumptions about the row space of the matrix.

Our algorithm for matrix approximation makes two passes through the columns of the matrix. In the
first pass, it subsamples each column uniformly at random and estimates each column norm and the matrix
Frobenius norm. In the second pass, the algorithm samples additional observations ⌦2,t ⇢ [n] from each
column, and for each t, places the rescaled zero-filled vector R⌦2,txt =

P
n

j=1
n

|⌦2,t|xt(j)1[j 2 ⌦2,t] into
the t-th column of a new matrix ˜X , which is a preliminary estimate of the input, X . Once the initial
estimate ˜X is computed, the algorithm zeros out all but the top r ranks of ˜X to form the final estimate ˆX .

A crucial feature of the second pass is that the number of samples per column is proportional to the
squared norm of that column. Of course this sampling strategy is only possible if the column norms
are known, motivating the first pass of the algorithm, where we estimate precisely these norms. This
feature allows the algorithm to tolerate highly non-uniform column norms, as it focuses measurements on
high-energy columns, and leads to significantly better approximation.

For the main performance guarantee, we only assume that the matrix has incoherent columns as de-
fined in Equation 3.2. We have the following theorem 1:
Theorem 4. Let X be an n ⇥ n matrix and define µ as in Equation 3.2. In the first pass observe m1 �
32µ log(n/�) entries from each column and in the second pass observe m2 entries per column on average.
With probability � 1� 2�, the adaptive algorithm computes an approximation ˆX such that:

kX � ˆXk
F

 kX �X
r

k
F

+ kXk
F

 
6

r
rµ

m2
log

✓
2n

�

◆
+

✓
6

r
rµ

m2
log

✓
2n

�

◆◆1/2
!

using n(m1 +m2) samples. In other words, the output ˆX satisfies kX � ˆXk
F

 kX �X
r

k
F

+ ✏kXk
F

with probability � 1� 2� and with sample complexity:

32nµ log(n/�) +
576

✏4
nrµ log

2

✓
2n

�

◆
. (3.3)

1See [58] for algorithm details and proofs.
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Figure 3.1: (a): Relative error of the adaptive algorithm as a function of sampling probability p for different
size matrices with fixed target rank r = 10 and µ = 1. (b): The same data where the y-axis is insteadpp✏.
(c): Relative error for adaptive and passive sampling on matrices with uniform column lengths (column
coherence µ = 1 and column norms are uniform from [0.9, 1.1]). (c): Relative error for adaptive and
passive sampling on matrices with highly non-uniform column lengths (column coherence µ = 1 and
column norms are from a standard Log-Normal distribution).

The theorem shows that the matrix ˆX serves as nearly as good an approximation to X as X
r

. Specifi-
cally, with O(nrµ log

2
(n)) observations, one can compute a suitable approximation to X .

The closest result to Theorem 4 is the result of Koltchinskii et al. [55] who consider a soft-thresholding
procedure and bound the approximation error in squared-Frobenius norm. They assume that the matrix
has bounded entrywise `1 norm and give an entrywise squared-error guarantee of the form:

k ˆX �Xk2
F

 kX �X
r

k2
F

+ cn2kXk21
nr log(n)

M
(3.4)

where M is the total number of samples and c is a constant. Their bound is quite similar to ours in the
relationship between the number of samples and the target rank r. However, since n2kXk21 � kXk2

F

,
their bound is significantly worse if the energy of the matrix is concentrated on a few columns.

To make this concrete, fix kXk
F

= 1 and let us compare the matrix where every entry is 1
n

with the
matrix where one column has all entries equal to 1p

n

. In the former, Koltchinskii et al. bound the squared-
Frobenius error by nr log(n)/M while our bound on Frobenius error is, modulo logarithmic factors, the
square root of this quantity. In this example, the two results are essentially equivalent. For the second
matrix, their bound deteriorates significantly to n2r log(n)/M while our bound remains the same. Thus
our algorithm is particularly suited to handle matrices with non-uniform column norms.

In the event of uniformity, our algorithm performs similarly to existing ones. Specifically, we obtain
the same relationship between the total number of samples M , the problem dimensions n and the target
rank r. If we knew a priori that the matrix had near-uniform column lengths, we could simply omit the
first pass of the algorithm, sample uniformly in the second pass and avoid the need for interactivity.

The main computational bottleneck of the algorithm involves obtaining the leading singular vectors
of the zero-filled matrix, which also governs the running time of the passive algorithm [55]. Thus our
interactive algorithm does not exhibit computational gains over non-interactive approaches. However, the
result and the above discussion does support our claim that interactive algorithms are particularly powerful
for non-uniform datasets.

3.2.1 Simulations

We now mention some empirical evaluations. In Figure 3.1(a), we plot the relative error, which is the ✏
in Equation 3.1, as a function of the average fraction of samples, p, per column for different matrix sizes.
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We rescale this data by plotting the y-axis in terms of pp✏ (Figure 3.1(b)). From the first plot, we see
that the error quickly decays, while a smaller fraction of samples are needed for larger problems. In the
second plot, we see that rescaling the error by pp flattens out all of the curves, which suggests that the
relationship between ✏ and the number of samples is indeed ✏ ⇣ 1p

p

. This scaling is actually better than
the dependence predicted by Theorem 4, but can be explained by specializations of the general result 2.

In the last set of simulations, we compare our algorithm with an algorithm that first performs uniform
sampling and then hard thresholds the singular values to build a rank r approximation. In Figure 3.1(c),
we use matrices with uniform column norms, and observe that both algorithms perform comparably.
However, in Figure 3.1(d), when the column norms are highly non-uniform, we see that the adaptive
algorithm dramatically outperforms the passive sampling approach. This confirms our claim that adaptive
sampling leads to better approximation when the energy of the matrix is not uniformly distributed.

3.3 Future Work

There are three main lines of proposed work. First, the excess risk bounds like Equation 3.1 are undesirable
for the matrix approximation problem because they can be quite weak when most of the energy of the
matrix is concentrated in the top ranks. Instead one would prefer relative error bounds of the form:

kX � ˆXk
F

 (1 + ✏)kX �X
r

k
F

(3.5)

While there are computationally efficient algorithms to achieve this form of guarantee without computing
the SVD, the techniques used do not seem to apply to the missing data setting, even with interactivity.
Nevertheless, there may be room for improvement over Theorem 4, as the algorithm is not harnessing
the full power of interactivity. We suspect that one can achieve better performance with more rounds of
interaction, and would like to analyze an algorithm of this form.

The second direction involves establishing lower bounds against passive algorithms. Again here some
results are known [55, 66], but they only consider uniform-at-random sampling models and also stochastic
noise. We would like to establish lower bounds against all non-interactive sampling distributions for the
matrix approximation problem.

Finally, we would like to study extensions to the adaptive compressive matrix approximation problem,
where the matrix is observed through a sequence of random projections. Here we believe that one can
again eliminate uniformity assumptions used in non-interactive algorithms for this problem [61].

2See Proposition 5 in [58].
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Chapter 4

Clustering

4.1 Introduction and Related Work

Clustering, an ubiquitous task in exploratory data analysis, data mining, and several application domains,
involves assigning objects to one or more groups so that objects in the same group are very similar while
objects in different groups are dissimilar. In a hierarchical clustering, the groups have multiple resolutions,
so that a large cluster may be recursively divided into smaller sub-clusters. There exist many effective
algorithms for clustering, but as modern data sets get larger, the fact that these algorithms require every
pairwise similarity between objects poses a serious measurement and/or computational burden and limits
the practicality of these algorithms. It is therefore appealing to develop effective clustering algorithms
with low measurement and computational overhead.

To achieve both measurement and computational improvements, we focus on using interactivity to
reduce the number of similarity measurements required for clustering. This approach results in immediate
reduction in measurement overhead in applications where similarities are observed directly, but it can also
provide dramatic computational gains in applications where similarities between objects are computed
via some kernel evaluated on observed object features. The case of internet topology inference is an
example of the former, where covariance in the packet delays observed at nodes reflects the similarity
between them. Obtaining these similarities requires injecting probe packets into the network and places
a significant burden on network infrastructure. Phylogenetic inference and other biological sequence
analyses are examples of the latter, where computationally intensive edit distances are often used. In the
former, our algorithm injects fewer packets than existing techniques, and in the latter our algorithm is
dramatically faster than popular algorithms.

In this chapter, we propose a novel interactive hierarchical clustering algorithm based on spectral
clustering. Spectral clustering is a very popular family of algorithms that relies on the structure of the
eigenvectors of the Laplacian of the similarity matrix. These algorithms have received considerable at-
tention in recent years due to its empirical success, but they suffers from the fact that they require all
n(n � 1)/2 similarities between the n objects to be clustered and must compute a spectral decompo-
sition, which can be computationally prohibitive on large datasets. Our adaptive algorithm avoids both
limitations by subsampling few objects in each round and only computing eigenvectors of very small sub-
matrices. By appealing to previous statistical guarantees [4], we can show that this algorithm has desirable
theoretical properties, both in terms of statistical and computational performance.

While there is a large body of work on hierarchical and partitional clustering, only a few algorithms
attempt to minimize the number of pairwise similarities used [11, 39, 75]. Along this line, the work of
Eriksson et. al. [39] and Shamir and Tishby [75] is closest in flavor to ours.
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Algorithm 1 ActiveSpectral(s, {x
i

}n
i=1)

if n  s then return {x
i

}n
i=1

Draw S ✓ {x
i

}n
i=1 of size s u.a.r.

C 0
l

, C 0
r

 SpectralCluster(S).
Set C

l

 C 0
l

, C
r

 C 0
r

.
for x

i

2 {x
i

}n
i=1 \ S do

↵
l

 1
|C0

l |
P

xj2C0
l
K(x

i

, x
j

) and analogously
for ↵

r

.
If ↵

l

> ↵
r

, add x
i

to C
l

, else add to C
r

.
end for

output {C
l

, C
r

, ActiveSpectral(s, C
l

)}

Algorithm 2 SpectralCluster({x
i

}n
i=1)

if n  1 then return {x
i

}n
i=1

Compute pairwise similarity matrix W 2 Rn⇥n

where W
ij

= K(x
i

, x
j

).
Compute Laplacian matrix L = D � W , D

ii

=P
n

j=1Wij

.
v2  smallest non-constant eigenvector of L.
C
l

 {i : v2(i) � 0}, C
r

 {j : v2(j) < 0}.
output {C

l

, C
r

}.

Eriksson et. al. [39] develop an adaptive algorithm for hierarchical clustering and analyze the cor-
rectness and measurement complexity of this algorithm under a noise model where a small fraction of the
similarities are inconsistent with the hierarchy. Our analysis yields similar results in terms of noise toler-
ance, measurement complexity, and resolution, but in the context of i.i.d. subgaussian noise rather than
inconsistencies. Shamir and Tishby [75] analyze a binary spectral algorithm based on randomly subsam-
pling similarities but they require ⌦(n2

) similarities to perfectly recover a two-way flat clustering. Our
work, translated to their setting improves this guarantee; Theorem 6 implies that our algorithm only needs
⌦(n log n) similarities. Furthermore, we can give guarantees on the size of smallest cluster ⌦(log n) that
can be recovered in a hierarchy by selectively sampling similarities at each level.

There are also a few papers that consider alternative models of interaction for clustering problems.
Two types of interaction in the literature are supervision via must-link and cannot-link constraints [12],
and via split or merge requests of an existing clustering [3, 6]. In these models, interactivity supple-
ments the pairwise similarities that are available up front and enables guarantees under weaker separation
assumptions. In contrast, in our setting, the similarities are not available up front and we employ in-
teractivity to selectively obtain them. Consequently, our setting is more challenging than even the fully
observed case.

4.2 Main Results

We focus on binary hierarchical clusterings over n objects defined as:
Definition 5. A binary hierarchical clustering C on objects {x

i

}n
i=1 is a collection of clusters such that

C0 , {x
i

}n
i=1 2 C and for each C

i

, C
j

2 C either C
i

⇢ C
j

, C
j

⇢ C
i

or C
i

\ C
j

= ;. For each
non-terminal cluster C 2 C, there exists two cluster C

l

, C
r

⇢ C such that C
l

[ C
r

= C.
Our algorithm for active spectral clustering is displayed in Algorithm 1 alongside pseudocode for

one variant of spectral clustering that we will use. To recover a single split of the hierarchy, the algorithm
subsamples s points and only uses similarities to these landmark points. The first step of the algorithm is to
cluster the landmarks using the spectral clustering algorithm in Algorithm 2. Using this initial clustering,
we place each remaining object into the seed cluster for which it is most similar on average. This results
in a flat clustering of the entire dataset, using only similarities to the landmark objects.

By recursively applying this procedure to each cluster, we obtain a hierarchical clustering. Since in
this recursive phase we do not observe measurements between clusters at the previous split, this results in
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an interactive algorithm that focuses its measurements to resolve the fine-grained cluster structure.
We analyze the algorithm under the noisy Hierarchical Block Model (noisy HBM) used in previous

work [4, 59]. At a high level, this model adds subgaussian perturbation to an ideal similarity matrix
for which within cluster similarities are larger than between cluster similarities. We have the following
theorem characterizing the performance of the algorithm:
Theorem 6. If the noise variance and balance factor are both constant, then the ActiveSpectral
algorithm, when run on a noisy hierarchical block model, succeeds in recovering all clusters of size s with
probability 1� o(1) provided that s = ⌦(log n). The algorithm uses O(ns log n) measurements and runs
in O(ns2 log s+ ns log n) time.

There are several tradeoffs worth mentioning here. To capture the tradeoff between the noise level and
measurement overhead, it is best to consider recovering only clusters of size ⌦(n). Our theorem states that
ActiveSpectral can tolerate a constant amount of noise while using only O(n log

2 n) measurements.
On the other hand, the result of Balakrishnan et. al. [4] shows that using O(n2

) measurements, one can
tolerate a noise level of

p
n/ log n. Varying s allows for interpolation between these two extremes.

The other tradeoff is between the noise level and the size of the smallest cluster recoverable, where one
should consider constant noise level. In this setting, the non-interactive algorithm recovers clusters of size
⌦(log n) but uses O(n2

) similarities. In contrast, our algorithm achieves the same statistical performance
but uses only O(n log

2 n) measurements. Note that this setting exhibits highly non-uniform cluster sizes
(ranging from ⌦(n) to ⌦(log n)), showing that interactivity is particularly powerful in the presence of
such non-uniformity.

Setting s = ⇥(log n) which suffices to tolerate a constant noise level, our algorithm runs in O(npolylog(n)).
In contrast, the algorithm that operates on the fully-observed similarity matrix [4] computes eigenvectors
of a n⇥n matrix and has at least quadratic computational complexity. This speedup is dramatically mag-
nified in settings where evaluating pairwise similarity is computationally demanding. Consequently, the
interactive algorithm is computationally very appealing.

4.2.1 Experiments

We now present some experimental results. In Figure 4.1 we plot the results of several simulations using
the interactive and non-interactive spectral clustering algorithms. By Theorem 6 and the above discussion,
we expect ActiveSpectral to recover all splits of size ⌦(n) in the presence of a constant amount of
noise, and we expect the non-interactive spectral algorithm [4] to tolerate noise growing with n at rate
� ⇣

p
n/ log n. We contrast these guarantees by plotting the probability of successful recovery of the

first split in a noisy HBM as a function of noise variance for different n in Figures 4.1(a) and 4.1(b). The
first figure demonstrates that indeed the noise tolerance of the non-interactive algorithm grows with n
while the second demonstrates that ActiveSpectral enjoys constant noise tolerance.

We next verify the measurement and run time complexity guarantees for ActiveSpectral in com-
parison with three passive clustering algorithms. In Figure 4.1(c) and 4.1(d), we plot the number of
measurements and running time as a function of n on a log-log plot for each algorithm. The passive
algorithms have steeper slopes, suggesting that they are polynomially more expensive in both cases.

In Table 4.1(e) we record the results from evaluating our adaptive algorithm and two popular passive
algorithms on four datasets: the set of articles from NIPS volumes 0 through 12 from [73], a subset
of NPIC500 co-occurence data from the Read-the-Web project [64] which we call RTW, a SNP dataset
from the HGDP [69], and a synthetic phylogeny dataset produced using phyclust [23]. Since the
reference clustering is not available in all of these datasets 1, we employ two distinct metrics to evaluate

1It is available in Phylo and SNP datasets, see [59] for more experimental results
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(a) (b)

(c) (d)

Algorithm HKM HRC Probes Time (s)
SNP

ACTIVESPEC 0.019 19.1 0.13 450
k-means 0.0028 18.7 1 160
Spectral 0.0075 130 1 5660

Phylo
ACTIVESPEC 0.012 22.9 0.071 600

k-means 0.0017 22.9 1 967
Spectral 0.0022 23.5 1 997

NIPS
ACTIVESPEC 0.010 1.5 0.094 79.4

k-means 0.0017 1.66 1 723
Spectral 0.0033 6.30 1 26200

RTW
ACTIVESPEC 0.0084 0.64 0.13 151

(e)

Figure 4.1: Figure (a) and (b): Noise thresholds for spectral and active spectral clustering. Figure (c):
Measurement complexity for interactive and non-interactive algorithms. Figure (d): Running time for
interactive and non-interactive algorithms. Table (e): Real world experiments.

the quality of hierarchical clusterings. They are a hierarchical K-means objective (HKM) [52] and an
analogous hierarchical ratio-cut (HRC) objective, both of which are natural generalizations of the k-means
and ratio cut objectives respectively, averaging across clusters, and removing small clusters as they bias
the objectives. Good hierarchical clusterings minimize both of these object values.

In Table 4.1(e), we record experimental results across the datasets for ActiveSpectral, the hier-
archical spectral clustering algorithm of [4], and a natural hierarchical extension of Lloyd’s algorithm for
k-means clustering. On the read-the-web dataset, we were unable to run the non-interactive algorithms.
The immediate observation is that ActiveSpectral is extremely fast; on the SNP and phylogeny
datasets where computing similarities is the bottleneck, interactivity leads to significant computational
improvements. Moreover, the algorithm performs fairly well according to the HKM and HRC metrics
although it is worse than the non-interactive algorithms. We believe that this gives empirical evidence
in favor of our algorithm; it allows one to find a suitable tradeoff between robustness on one hand and
measurement and computational efficiency on the other.

4.3 Future Work

There are two main avenues for future work. The first is to establish lower bounds against passive algo-
rithms for hierarchical clustering. We already have lower bounds in the fully observed setting, but it is
important to introduce a measurement budget to better compare with interactive approaches.

The second is an extension to flat clusterings with non-uniform sizes. Recently, a peeling technique
was shown to succeed in the graph clustering setting with non-uniform cluster sizes [1] and we would
like to extend this to the noisy block model setting. It would also be interesting to combine the flat and
hierarchical algorithms yielding a general algorithm for interactive clustering.
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Chapter 5

Learning Latent Tree Metrics

5.1 Introduction and Related Work

Knowledge of a network’s topology and internal characteristics such as delay times and losses is crucial
to maintaining seamless operation of network services. Yet for todays incredibly large and decentralized
networks, these global properties are not directly available, but must be inferred from indirect measure-
ments. Network tomography [22, 81] is a promising approach that aims to gather such knowledge using
only end-to-end measurements between nodes at the periphery of a network without cooperation from
core routers. In this chapter, we contribute to this important direction with two algorithms that accurately
recover network characteristics from end-to-end measurements.

Given the size and complexity of the Internet, the practicality of any network tomography algorithm
should be evaluated by its noise tolerance and robustness to violations of any modeling assumptions, as
well as its measurement complexity. State-of-the-art methods typically suffer in at least one of these
directions. Some methods do not optimize and/or provide rigorous guarantees on the number of measure-
ments needed, while others do not guarantee robustness to noise. We consider both noise tolerance and
measurement overhead and provide algorithms with rigorous guarantees along both axes.

Our work falls into the category of multi-source tomography, where measurements can be obtained
between any pair of end hosts, rather than single-source tomography, where all measurements are initiated
from a single host. Multi-source tomography offers the practical advantage of using extremely simple
measurements such as hop counts or latencies, while single-source tomography relies on infrequently
deployed multicast probes ([15, 34, 35, 36]) or complex packet sequences ([26, 37, 38, 67, 80]) to obtain
similarity information. However, since the set of links traversed by packets emanating from a single
host form a tree structure, single-source methods focus on inferring tree topologies, while multi-source
methods face the challenge of recovering more general graph structures.

Motivated by recent work [71] showing that internet latency and bandwidth can be well approximated
by path lengths on trees, our algorithms are designed to construct tree topologies and consequently tree
metrics. However, we introduce two models to capture violations of the tree-metric assumption: (a) an
additive noise model, where all measurements are corrupted by additive subgaussian noise, resulting in
small deviations from the tree metric properties, and (b) a persistent noise model in which a fraction of
the measurements are arbitrarily corrupted. Even under these noise models, our algorithms have provable
guarantees about correctness and measurements complexity. Empirically, they perform well on multi-
source network tomography datasets which do not satisfy the tree-metric assumption.

Our algorithms, and indeed several existing methods for network tomography [38, 67], are interactive
in that they employ feedback-driven measurement mechanisms. Interactivity allows one to use signifi-
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cantly fewer measurements and consequently reduces traffic injected into the network. In particular, we
will use a nearly-linear number of measurements (in the number of end hosts) to recover the network
structure.

5.2 Main Results

Let X = {x
i

}n
i=1 denote the end hosts in a network and let d : X ⇥ X ! R+ be a function representing

the true distances between the network hosts. Our work focuses on distance metrics d that approximate
additive tree metrics. Specifically, let T = (V, E , c) be a tree with vertices V , edges E and edge weights
given by the cost function c, for which X is the set of leaves. An additive tree metric on X is the function
dT such that dT (xi, xj) =

P
(y,z)2Path(xi,xj)

c(y, z), that is the distance between two points is the sum
of the edge weights along the unique path between them. A common algorithmic tool for resolving tree
metrics is the quartet test, which resolves the structure between any four leaves in a tree using only
pairwise distances between those leaves [68]. We will make extensive use of this algorithmic primitive.

In this work, we model network distances as d(x
i

, x
j

) = dT (xi, xj) + g(x
i

, x
j

), where the tree T is
unknown and the function g captures the network’s deviations from a tree metric. This approach gives us
a firm mathematical basis under which we can make rigorous guarantees about the performance of our
algorithms. We focus on two models for these deviations:

1. Additive Noise: Here, g(x
i

, x
j

) is drawn from a subgaussian distribution with scale factor �2. This
captures inherent randomness in certain measurement types, such as latencies. We allow repeated
measurements, with fresh randomness, and aim to minimize the total number of measurements.

2. Persistent Noise: Here g(x
i

, x
j

) = 0 with probability q (q is known), independent of all other x
i

and x
j

, and with probability 1�q, g(x
i

, x
j

) is arbitrarily or adversarially chosen. This models gross
deviations from the tree metric assumption caused by peering links, unresponsive nodes, or missing
measurements. Repeated measurements cannot be used to average away this form of noise.

In the additive noise setting, we have the following theorem 1:
Theorem 7 (Informal). Assume that the tree T has minimum edge length � and maximum degree l. Then,
in the additive noise model, there is an algorithm that exactly recovers the topology T and recovers the
edge weights to within additive O(�) using O(nl�

2

�

2 log
2
(n)) measurements.

The idea behind the algorithm, which we call PearlReconstruct, is to iteratively attach leaves to a
candidate solution tree T . To add leaf x

i

, we perform an intelligent series of quartet tests to find a pair of
nodes x

j

, x
k

such that the distance between x
i

and the shared ancestor of x
i

, x
j

, x
k

is minimized. This
information and a few more quartet tests determines how to add x

i

to the tree. We choose to perform a
quartet test involving an internal node with fairly balanced subtrees (known as the pearl point [68]) at each
round, which allows us to reduce the search to a subtree that is multiplicative smaller using only a constant
number of measurements. This leads to a logarithmic measurement complexity per node, although there
is linear dependence on the degree l.

To be robust to noise, we repeat each measurement O(

�

2

�

2 log(n)) times, which ensures that our dis-
tance estimates deviate from the truth by at most an additive O(�). This ensure not only that all quartet
tests agree with the tree T so that we recover the topology exactly, but also that each edge weight is
estimated to within O(�). This leads to the sample complexity bound in the theorem.

In the persistent noise setting, we have the following:
Theorem 8 (Informal). There is an algorithm that recovers all internal nodes of T for which every subtree
has size at least ⌦(q�6

log(n)) that uses O(nq�6
log

2
(n)) measurements.

1Details, formal theorem statements, and proofs can be found in [56].
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Figure 5.1: Network Tomography simulations and experiments. (a): Additive noise tolerance of algorithm
from Theorem 7. (b): Persistent noise tolerance of algorithm from Theorem 8. Relative errors on King
dataset (c) and iPlane dataset (d).

The algorithm, named RISING, recursively partitions the leaves into groups corresponding to subtrees
of T so that each partitioning step identifies one internal node of the tree. In more detail, the partitioning
step involves first sampling a subset of leaves, clustering these leaves into subtrees, and then placing the
remaining leaves into these subtrees. In the clustering phase, we compute a similarity function s on the
sampled leaves where s(x

i

, x
j

) is large if x
i

, x
j

belong in the same subtree. The similarity function is
the number of quartets that pair x

i

, x
j

together, among all quartets formed by the subset of leaves. We
compute the similarity function and then run the single linkage clustering algorithm to partition the subset.

In the second part of the partitioning step, we again use quartet tests to place each remaining leaf. For
each leaf x

i

, we compute quartet structures between x
i

and three nodes, each from a different subtree, and
place x

i

into the subtree that most commonly paired with it. The dependence on q6 is natural, as there
are six distances used in each quartet test. Similarly, the requirement that only internal nodes with large
enough subtrees can be recovered is natural since small subtrees are irrecoverably buried in noise.

Returning to our themes of computational efficiency and non-uniformity, the additive noise algorithm
runs in O(npolylog(n)) time, while the persistent algorithm focuses measurements to resolve fine-grained
structures of the underlying tree. As we are not aware of non-interactive algorithms that operate on sub-
sampled versions of the input distance matrix, it is difficult to make comparisons to our methods. In the
additive noise setting, the non-interactive approaches examine all pairwise distances and consequently
have ⌦(n2

) running times. In the persistent noise setting, it seems unlikely that non-interactive subsam-
pling would yield as strong a guarantee as Theorem 8, as one would not have enough measurements to
resolve internal nodes with small subtrees. Thus, this setting also lends evidence to our thesis.

5.2.1 Experiments

We now present some experimental results. In Figures 5.1(a) and 5.1(b) we assess the noise tolerance of
our two algorithms on synthetic data. We measure error in terms of the fraction of quartets in the recovered
tree that disagree with the reference tree. The figures show that both algorithms are exact in the absence
of noise and robust to small amounts of the appropriate form of noise (additive or persistent). Moreover
for both algorithms, the noise tolerance improves as the network size increases.

Figures 5.1(c) and 5.1(d) display experimental results on real-world network tomography datasets.
We use two datasets: the King dataset [43] of pairwise latencies and a dataset of hop counts between
PlanetLab [70] hosts measured using iPlane [62]. We selected a 500-node subset of the 1740-node King
dataset. The iPlane dataset consists of 193 end hosts. We compared both of our algorithms with the
Sequoia algorithm [71] on these datasets. Note that the Sequoia algorithm can be used to build many trees
and uses the median distance across all trees as its distance estimates. To make a fair comparison, we ran
Sequoia so that it used roughly the same number of measurements as RISING (Theorem 8).
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Dataset Hosts Total Pearl RISING Sequoia
King 500 125250 8321 43608 42599
iPlane 194 18721 2480 12309 11574

Table 5.1: Measurements used on real world data sets

We plot the distribution of relative error values for each algorithm in Figures 5.1(c) and 5.1(d). Given
the constructed tree metric (X , ˆd) and the true metric (X , d), we measure relative error for each pairwise
distance as |d̂(x,y)�d(x,y)|

d(x,y) . We see that on both datasets, RISING outperforms both Sequoia and PearlRe-
construct (Theorem 7), with substantial improvements on the King dataset. PearlReconstruct performs
well on the King dataset, but not so well on the iPlane dataset.

Lastly, in Table 5.1 we record the number of measurements used by the algorithms on the two datasets.
Note that all the algorithms use only a fairly small subset of the measurements, and the fraction of mea-
surements used decreases on larger datasets. PearlReconstruct uses far fewer measurements than the other
two algorithms, but is statistically much worse. Nevertheless, these results show that our algorithms can
be used to robustly learn latent tree metrics using only a small number of pairwise distance measurements.

5.3 Future Work

We see several potential directions for future research:
1. One direction is to accommodate both persistent and additive noise simultaneously in the multi-

source network tomography problem. This would lead to a more practical algorithm.

2. It is also worth understanding if a less brittle clustering algorithm will improve the statistical guar-
antees of the the RISING algorithm. The single linkage algorithm requires a strong guarantee on the
similarity function that in turn introduces a unfavorable dependence on the error probability q and
on the set of nodes that we can recover. It seems plausible that a more robust clustering algorithm
can temper these dependencies.

3. Another restriction of the RISING algorithm is that it requires the tree to be fairly balanced. This
ensures that the similarity function is robust to persistent noise, as there are enough leaves in each of
the target subtrees. It would be worthwhile to design an algorithm that is robust to persistent noise
but that also accommodates unbalanced tree structures.

4. Lastly, it seems worthwhile to understand the fundamental limits and the power of passive subsam-
pling for this problem. This would allow for better comparison with our interactive approaches.
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[15] Shankar Bhamidi, Ram Rajagopal, and Sébastien Roch. Network delay inference from additive
metrics. Random Structures & Algorithms, 2010. 5.1

[16] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved approximation algorithm

21



for the column subset selection problem. ACM-SIAM Symposium on Discrete Algorithms, 2009. 3.1

[17] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal column-based matrix
reconstruction. In IEEE Symposium on Foundations of Computer Science, 2011. 3.1

[18] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 2010. 2.2.1, 3

[19] Emmanuel J Candès and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 2010.
3.1

[20] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational Mathematics, 2009. 2.1

[21] Emmanuel J. Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix com-
pletion. IEEE Transactions on Information Theory, 2010. 2.1

[22] Rui M Castro, Mark J Coates, Gang Liang, Robert Nowak, and Bin Yu. Network Tomography:
Recent Developments. Statistical Science, 2004. 5.1

[23] Wei-Chen Chen. Phylogenetic Clustering with R package phyclust, 2010. URL http://

thirteen-01.stat.iastate.edu/snoweye/phyclust/. 4.2.1

[24] Yudong Chen. Incoherence-optimal matrix completion. arXiv:1310.0154, 2013. 2.1

[25] Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, and Rachel Ward. Coherent matrix comple-
tion. In International Conference on Machine Learning, 2014. 2.1

[26] Mark J Coates, Rui M Castro, and Robert D Nowak. Maximum likelihood network topology identi-
fication from edge-based unicast measurements. ACM SIGMETRICS, 2002. 5.1

[27] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural
Information Processing Systems, 2006. 1

[28] Sanjoy Dasgupta. Two faces of active learning. Theoretical Computer Science, 2011. 1

[29] Sanjoy Dasgupta, Claire Monteleoni, and Daniel J. Hsu. A general agnostic active learning algo-
rithm. In Advances in Neural Information Processing Systems, 2008. 1

[30] Vin de Silva and Joshua B. Tenenbaum. Global versus local methods in nonlinear dimensionality
reduction. Advances in Neural Information Processing Systems, 2002. 2

[31] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo Algorithms for matrices
II: Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 2006. 3.2

[32] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for matrices
III: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing,
2006. 3.2

[33] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompo-
sitions. SIAM Journal on Matrix Analysis and Applications, 2008. 3.1

[34] Nick G. Duffield and Francesco Lo Presti. Network tomography from measured end-to-end delay
covariance. IEEE/ACM Transactions on Networking, 2004. 5.1

[35] Nick G. Duffield, Joseph Horowitz, and Francesco Lo Presti. Adaptive multicast topology inference.
IEEE INFOCOM, 2001. 5.1

[36] Nick G. Duffield, Joseph Horowitz, Francesco Lo Presti, and Don Towsley. Multicast topology
inference from measured end-to-end loss. IEEE Transactions on Information Theory, 2002. 5.1

22

http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
http://thirteen-01.stat.iastate.edu/snoweye/phyclust/


[37] Nick G. Duffield, Francesco Lo Presti, Vern Paxson, and Don Towsley. Network loss tomography
using striped unicast probes. IEEE/ACM Transactions on Networking, 2006. 5.1

[38] Brian Eriksson, Gautam Dasarathy, Paul Barford, and Robert Nowak. Toward the Practical Use of
Network Tomography for Internet Topology Discovery. IEEE INFOCOM, 2010. 5.1

[39] Brian Eriksson, Gautam Dasarathy, Aarti Singh, and Robert Nowak. Active Clustering: Robust and
Efficient Hierarchical Clustering using Adaptively Selected Similarities. AISTATS, 2011. 4.1

[40] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. Journal of the ACM, 2004. 3.2

[41] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor completion and low-n-rank tensor recovery
via convex optimization. Inverse Problems, 2011. 2.1

[42] David Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions
on Information Theory, March 2011. 2.1

[43] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimating latency between
arbitrary internet end hosts. In SIGCOMM Workshop on Internet measurment. ACM, 2002. 5.2.1

[44] Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank matrix reconstruc-
tion. In ACM-SIAM symposium on Discrete Algorithms. SIAM, 2012. 3.1

[45] Steve Hanneke. A bound on the label complexity of agnostic active learning. In International
conference on Machine Learning, 2007. 1

[46] Steve Hanneke. Teaching dimension and the complexity of active learning. Conference on Learning
Theory, 2007. 1

[47] Steve Hanneke. Rates of convergence in active learning. The Annals of Statistics, 2011. 1

[48] Moritz Hardt. Understanding Alternating Minimization for Matrix Completion. In Foundations of
Computer Science, 2014. 2.1

[49] Jarvis Haupt, Rui Castro, and Robert Nowak. Distilled sensing: Adaptive sampling for sparse detec-
tion and estimation. IEEE Transactions on Information Theory, 2011. 1

[50] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating
minimization. In ACM Symposium on Theory of Computing, 2013. 2.1

[51] Rong Jin and Shenghuo Zhu. CUR Algorithm with Incomplete Matrix Observation.
arxiv:1403.5647, 2014. 2.1, 1, 2.2

[52] David Kauchak and Sanjoy Dasgupta. An Iterative Improvement Procedure for Hierarchical Clus-
tering. In Advances in Neural Information Processing Systems, 2004. 4.2.1

[53] Raghunandan H. Keshavan. Efficient Algorithms for Collaborative Filtering. PhD thesis, Stanford
University, 2012. 2.1

[54] Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few
entries. IEEE Transactions on Information Theory, 2010. 3.1

[55] Vladimir Koltchinskii, Karim Lounici, and Alexandre B. Tsybakov. Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion. The Annals of Statistics, 2011. 1, 3.1, 3.2, 3.2,
3.3

[56] Akshay Krishnamurthy and Aarti Singh. Robust multi-source network tomography using selective
probes. In IEEE INFOCOM, 2012. 1

[57] Akshay Krishnamurthy and Aarti Singh. Low-rank matrix and tensor completion via adaptive sam-

23



pling. Advances in Neural Information Processing Systems, 2013. 2, 3

[58] Akshay Krishnamurthy and Aarti Singh. On the Power of Adaptivity in Matrix Completion and
Approximation. arxiv:1407.3619, 2014. 1, 2, 1, 2

[59] Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient active algo-
rithms for hierarchical clustering. In International Conference on Machine Learning, 2012. 4.2,
1

[60] Akshay Krishnamurthy, James Sharpnack, and Aarti Singh. Recovering graph-structured activations
using adaptive compressive measurements. arXiv:1305.0213, 2013. 1

[61] Akshay Krishnamurthy, Martin Azizyan, and Aarti Singh. Subspace learning from extremely com-
pressed measurements. arXiv:1404.0751, 2014. 4, 3.3

[62] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas Anderson, Arvind Kr-
ishnamurthy, and Arun Venkataramani. iPlane: An information plane for distributed services. In
Symposium on operating systems design and implementation, 2006. URL http://iplane.cs.

washington.edu. 5.2.1

[63] Matthew Malloy and Robert Nowak. Sequential analysis in high-dimensional multiple testing and
sparse recovery. IEEE International Symposium on Information Theory, 2011. 1

[64] Tom Mitchell. Noun Phrases in Context 500 Dataset, 2009. URL http://www.cs.cmu.edu/

˜

tom/10709_fall09/RTWdata.html. 4.2.1

[65] Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square Deal: Lower Bounds and Improved
Relaxations for Tensor Recovery. arxiv:1307.5870, 2013. 2.1

[66] Sahand Negahban and Martin J. Wainwright. Restricted strong convexity and weighted matrix com-
pletion: optimal bounds with noise. The Journal of Machine Learning Research, 2012. 1, 3.1,
3.3

[67] Jian Ni, Haiyong Xie, Sekhar Tatikonda, and Yang Richard Yang. Efficient and Dynamic Rout-
ing Topology Inference From End-to-End Measurements. IEEE/ACM Transactions on Networking,
2010. 5.1

[68] Judea Pearl and Michael Tarsi. Structuring causal trees. Journal of Complexity, 1986. 5.2, 5.2

[69] Trevor J. Pemberton, Mattias Jakobsson, Donald F. Conrad, Graham Coop, Jeffrey D. Wall,
Jonathan K. Pritchard, Pragna I. Patel, and Noah A. Rosenberg. Using population mixtures to opti-
mize the utility of genomic databases: linkage disequilibrium and association study design in India.
Annals of human genetics, 2008. 4.2.1

[70] Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir. Experiences building planetlab.
In Symposium on operating systems design and implementation, 2006. 5.2.1

[71] Venugopalan Ramasubramanian, Dahlia Malkhi, Fabian Kuhn, Mahesh Balakrishnan, Archit Gupta,
and Aditya Akella. On the treeness of internet latency and bandwidth. ACM SIGMETRICS, 2009.
5.1, 5.2.1

[72] Benjamin Recht. A simpler approach to matrix completion. The Journal of Machine Learning
Research, 2011. 2.1, 2.2

[73] Sam T. Roweis. NIPS Articles 1987-1999, 2002. URL http://cs.nyu.edu/

˜

roweis/

data.html. 4.2.1

[74] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through geo-

24

http://iplane.cs.washington.edu
http://iplane.cs.washington.edu
http://www.cs.cmu.edu/~tom/10709_fall09/RTWdata.html
http://www.cs.cmu.edu/~tom/10709_fall09/RTWdata.html
http://cs.nyu.edu/~roweis/data.html
http://cs.nyu.edu/~roweis/data.html


metric functional analysis. Journal of the ACM (JACM), 2007. 3.2

[75] Ohad Shamir and Naftali Tishby. Spectral Clustering on a Budget. AISTATS, 2011. 4.1
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