
Re-thinking computation offload for efficient
inference on IoT devices with duty-cycled radios

Jin Huang, Hui Guan, Deepak Ganesan
University of Massachusetts Amherst, Amherst, MA 01375, USA

{jinhuang,huiguan,dganesan}@cs.umass.edu

ABSTRACT
While a number of recent efforts have explored the use of
“cloud offload” to enable deep learning on IoT devices, these
have not assumed the use of duty-cycled radios like BLE. We
argue that radio duty-cycling significantly diminishes the
performance of existing cloud-offload methods. We tackle
this problem by leveraging a previously unexplored oppor-
tunity to use early-exit offload enhanced with prioritized
communication, dynamic pooling, and dynamic fusion of
features. We show that our system, FLEET, achieves sig-
nificant benefits in accuracy, latency, and compute budget
compared to state-of-art local early exit, remote process-
ing, and model partitioning schemes across a range of DNN
models, datasets, and IoT platforms.

CCS CONCEPTS
• Computer systems organization → Cloud comput-
ing.

KEYWORDS
edge computing, cloud computing, computation off-loading,
deep neural networks

ACM Reference Format:
Jin Huang, Hui Guan, Deepak Ganesan. 2023. Re-thinking com-
putation offload for efficient inference on IoT devices with duty-
cycled radios. In The 29th Annual International Conference on Mo-
bile Computing and Networking (ACM MobiCom ’23), October 2–6,
2023, Madrid, Spain. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3570361.3592514

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9990-6/23/10. . . $15.00
https://doi.org/10.1145/3570361.3592514

BLE Specifications Values

Physical Layer(PHY) 125 Kbps, 500 Kbps, 1Mbps, 2Mbps
Connection Interval(CI) 7.5ms - 4s(iOS: 15ms min)
Packets per CI(Packets) 2 - 8(iOS:4, Android:6)
Packet Size 27 - 251 Bytes
Typical Tx Power 10mW

Table 1: BLE Specifications

1 INTRODUCTION
Recent years have seen substantial interest in deployingDeep
Neural Network (DNN) models on resource-constrained In-
ternet of Things (IoT) devices [24, 30, 33, 44]. IoT devices are
increasingly interfaced with rich sensors, such as low-power
cameras, microphones, and radars and DNNs have shown
superior performance on analyzing data from these sensors.
It is, however, challenging to execute complex models on
these platforms locally due to the high computation demands
of DNNs [13, 36].

A number of recent efforts have explored the use of “cloud
offload” as a strategy to allow IoT devices to execute DNNs ef-
ficiently [17, 20, 22, 25, 37]. These methods typically involve
either offloading raw data after compression (e.g. using JPEG
or other lossy compression method [32]) or offloading some
intermediate results after initial processing at the IoT device
(e.g. transmitted compressed intermediate results of a DNN
[17, 20]).
However, this body of research has assumed a radio that

can transmit whenever needed and as much data as desired.
This assumption is at odds with duty-cycled radios which
are common in IoT devices. Since the dominant duty-cycled
radio is Bluetooth Low Energy (BLE), we focus on that radio
in this paper.

A number of BLE parameters can impact the performance
of a cloud offload method (shown in Table 1). A key metric
is the connection interval (CI) i.e. the sleep duration between
transmissions which can range from 7.5ms to 4s (longer CIs
are preferred to extend battery life). BLE also has relatively
low bitrate of under 2Mbps, with lower bitrates if the devices
are not proximate to one another. In addition, the number of
packets transmitted after each sleep period are also limited.
The number varies across platforms and BLE standards — for
example, iOS limits BLE 5.0 transmissions to be four packets,
and Android limits it to 6 packets[3]. Each of these packets

https://doi.org/10.1145/3570361.3592514
https://doi.org/10.1145/3570361.3592514
https://doi.org/10.1145/3570361.3592514

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jin Huang, Hui Guan, Deepak Ganesan

can be at most 251 bytes. These limitations constrain how fast
data can be offloaded to the cloud — even if the connection
interval is set to the smallest value, offloading is imprac-
tical for BLE-based devices. When reliable transmission is
required, BLE transmits the data in one burst, and receives
the acknowledgements in the next burst, thus data transfer
only occurs every two sleep-wake cycles and average band-
width is halved. Finally, BLE also can have high packet losses,
particularly when larger packet sizes of more than 100 bytes
are used and when transmission is frequent [41].

All of these factors stretch the transmission of data across
several short bursts of data transmission interspersed by
long idle times, resulting in inefficient cloud offload. This
motivates us to develop a new cloud-offload method that
can cooperate with duty-cycled transmissions and reduce
inference latency.
Our contribution: This paper proposes a cloud-offload
pipeline called FLEET1 that is tailored to the duty-cycling
behavior of IoT radios. The basic idea of FLEET is to com-
pute locally during the periods when the radio is asleep and
yet leverage the cloud using data offloaded during the win-
dows of time when it can transmit data. It intertwines model
execution and communication by developing an early exit
model to mask the latency of using the radio. In the early exit
model, a DNN model is enhanced to have cloud-offloadable
early exit modules at some layers such that the model only
executes until it is sufficiently confident about the result and
can exit without having to run the remaining layers. While
early-exit models have been extensively studied [21, 39],
there are two unique challenges when re-purposing them to
enable cloud-offload using duty-cycled radios.
The first challenge is how to prioritize what to transmit

during each burst and build in robustness to packet losses.
Duty-cycled radios like BLE involve an initial negotiation
with the master device (IoT devices are typically the slave),
which gets the final say in deciding the sleep-wake parame-
ters such as sleep duration, number of packets per burst, and
bandwidth setting. Thus, any model that we design has to
be agnostic of these parameters such that it can work across
different settings. In addition, IoT radios transmit at very low
power for energy-efficiency (e.g. BLE Tx power is typically
10mW whereas WiFi Tx power is typically 1-4W). Hence
they are particularly susceptible to packet losses.
In order to utilize limited communication opportunities

most effectively, FLEET features a dynamic pooling based
prioritized communication approach that can transmit the
most up-to-date intermediate results within the allocated
transmission window. Our approach progressively transmits
data from small to high resolutionwith feature sharing across
these resolutions by using dynamic pooling. This method

1FLEET = oFLoad Early ExiT

allows us to be agnostic of radio settings and packet losses
and opportunistically transmit as much as possible. It also
allows us to stop transmitting intermediate results from a
previous layer when the current layer finishes execution and
seamlessly switch to the next layer’s results.

The second challenge is how to handle the limited features
transmitted to the cloud. Offloading early exit computation
to the cloud has the advantage of being able to use a lot more
resources to execute deeper models. However, it still needs to
contend with the fact that only limited data is available per
burst. The cloud needs to leverage all available information,
i.e. all data that is transmitted by the IoT device from the
previous bursts, not just the data from the current burst. This,
in turn, requires us to develop a model that can leverage
variable-sized intermediate results transmitted from prior
layers to improve task accuracy.

In order to fuse variable amounts of data from different lay-
ers, FLEET proposes an server-side feature fusion approach
that allows the server to take advantage of data transmitted
during the execution of different layers, even if they are not
at the same resolution or have the same number of inter-
mediate results. We use up-sampling and dense blocks for
feature fusion and thereby reduce the cost of training.
We evaluate FLEET extensively across the range of BLE

parameter settings, three datasets and multiple IoT proces-
sors, and show that:

• Compared to local execution, FLEET can achieve 2.3×
– 4.7× speed-up in latency and 2.1× – 4.4× saving in
energy. Compared to Edge-cloud Model Partitioning,
FLEET achieves 1.2× – 3.3× speed-up in latency and
1.8× – 2.6× reduction in energy. Compared with JPEG-
compressed data offload, FLEET achieves 1.7× – 6.1×
speed-up in latency and 1.6× – 4.4× energy savings.

• Overall, FLEET can achieve 1.2×–4.0× reduction in
latency when compared with the best of all local and
remote execution baselines; FLEET also achieves 1.2×–
2.5× saving in energy consumption.

• FLEET outperforms baselines on a range of IoT pro-
cessors (from low end Cortex-M33 [2] to more power-
ful GAP8 [42] and Cortex-A77 [1]), across different
datasets (ImageNet-100, TinyImageNet and CIFAR-
100), and different models (MobileNetV3, ResNet34
and InceptionV3).

• FLEET is robust to packet losses and can operate
seamlessly without requiring knowledge of underlying
duty-cycling parameters while providing substantial
latency speed-up.

2 CASE FOR FLEET
In this section, we argue that cloud offload of early exits
presents new opportunities for IoT devices with duty-cycled

Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

radios such as Bluetooth Low Energy (BLE). We begin with
a brief background on BLE.

BLE is a successor to Bluetooth Classic that is specifically
designed for highly constrained IoT devices. While BLE can
be used for unscheduled data transfer, this is not ideal for
extending battery lifetime. As described earlier, the most
efficient mode of operating a BLE radio is in duty cycled
mode, i.e. the radio sleeps for tens or hundreds of millisec-
onds and wakes up to transmit a few packets before turning
off its radio. In this mode, BLE consumes less than 10% of
the energy of Bluetooth Classic.

While duty-cycling benefits energy-efficiency, it adversely
affects latency for any cloud-offload method. Thus, canonical
methods such as compressing images via JPEG and transmit-
ting to the cloud incurs hundreds of milliseconds of delay
due to the data being chopped up into small bursts that fit
in each connection interval.

Our core idea to address the problem is cloud-based early
exit. We refer to a DNN model that has early exits as an
early-exit model, the DNN model itself as the base model, and
the attached layers for an early exit as a early-exit module.
Cloud-based early exit offloads the computation of early-
exit modules to the cloud. It allows the base model to be
executed locally on device during the periods when the radio
is asleep and early exit modules on the cloud to continue
the computation on intermediate data offloaded when the
radio is active. There are three high-level reasons why we
expect this architecture to be more naturally aligned with
the needs of both cloud offload and the constraints of duty-
cycled radios.

Pipelining cloud-offload and local execution: The first
advantage of cloud-based early exit is the ability to use a duty-
cycled radio and processor in a pipelined manner to mask
the latency of using the radio. This addresses a limitation of
canonical cloud-offload methods, for example, transmission
of JPEG-compressed data or edge-cloud model partitioning,
which are blocking i.e. they are idle during radio sleep cycles.
In contrast, early-exit computation offloaded to the cloud is
non-blocking, i.e. the computation of the next stage in the
base model can occur simultaneously with the computation
of the early-exit module.
Figure 1a shows latency for a model with and without

early exit. When there is no early-exit, the latency is fixed
for all data cases; when there is early exit, the latency is
more evenly spread out with only the hard cases incurring
the maximum latency. Since the radio and processor can
operate in parallel, the IoT device can transmit part of the
intermediate results after each layer to the cloud for early
exit computation while the next layer of the base model is
executing locally. This allows it to operate in a non-blocking

manner and use both local and remote resources to minimize
inference latency.
Leveraging deeper early exit modules: The second ad-
vantage is the cloud-based early exit allows us to leverage
deeper models in the cloud. While early exits can be imple-
mented with fewer layers to execute locally, this sacrifices
accuracy compared to deeper models that can execute on
the cloud.
Figure 1b compares three versions of a local early-exit

model that uses one fully-connected layer (1 FC), two con-
volutional layers and one fully-connected layer (2 Conv + 1
FC) and four convolutional layers and one fully-connected
layer (4 Conv + 1 FC) in its early-exit modules. We see that
adding two additional convolutional layer improves accuracy
of the early-exit model by 15% for earlier exits and 7% for
later exits; and two additional layers improves accuracy by
10% for earlier exits and 4% for later exits.

Thus, we see that additional resources for the early-exit
computation is useful and offloading this block to the cloud
can allow more accurate early exit computation to improve
performance of the base model on the IoT device.
Fusing intermediate results frommultiple layers: The
third advantage is that early exit modules on the cloud can
leverage not just the intermediate results from the layer they
are attached to but all prior layers as well. Local early exit on
resource-constrained platforms typically work only on inter-
mediate data from the specific layer that they are attached
to, but this diminishes accuracy.

Figure 1c compares the three versions of early exit a) using
only two channels that were transmitted after the current
layer, b) fusing two channels from the current and previous
layer, and c) fusing two channels from the previous two
layers with the current layer. We see that if we used the
channels from prior layers, accuracy improves and is higher
than what can be achieved with features from a single layer.
Fusing data from multiple layers is particularly useful

for cloud offload since duty-cycled radios cannot transfer a
lot of intermediate results after each layer. However, since
resources are plentiful at the server, it can fuse all data trans-
mitted from previous layers to offset this drawback and still
achieve good performance.

3 DESIGN OF FLEET
3.1 Overview
The FLEET pipeline consists of three main components as
shown in Figure 2 — Encoder, Fusion Module and Cloud Early-
Exit. The cloud early-exit components and the fusion mod-
ules form a complete set of early-exit modules.
Encoder: The goal of the encoder is to compactly encode

the features of each layer to facilitate transmission in the
limited communication opportunities. A key design principle

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jin Huang, Hui Guan, Deepak Ganesan

(a) (b) (c)
Figure 1: Three advantages of early exit for duty-cycled cloud offload. (a) Cumulative Distribution Function (CDF)
shows the fraction of data cases that exit early at each layer. In our setup, Early Exit transmits and exits after each
layer when the prediction logits is larger than 0.7, which is well aligned with duty-cycled radios and provides a
more graded latency profile (b) Cloud offload allows us to fuse features from several previous layers, which also
increases accuracy, and (c) Cloud offload allows us to use more layers in the early exit module which increases
accuracy.

Figure 2: Overall Design of FLEET.

is that it should make minimal assumptions about the cur-
rent radio duty-cycling parameters and packet loss so that
the encoder can work effectively even if these parameters
change.
The encoder works as follows. The layers on the IoT de-

vices are sequentially executed as usual. Between each layer,
an Encoder layer is inserted that encodes the features of the
current layer via dynamic pooling and progressively trans-
mits the features during duty-cycling wakeups that occur
during the execution of the next layer. Since the encoder
performs only lightweight pooling operations, its runtime
overhead is negligible.

We assume that the Convolutional layers/blocks to be exe-
cuted on the IoT devices are 𝐿1:𝑁 . The feature map F1:N from
each layer is a 3-dimensional vector whose size is defined

by its width, height and the number of channels(depth). The
encoder will reduce the feature map F1:N into the smaller fea-
ture map F̃1:N by reducing both its height/width and depth.

Fusion module: This module fuses the features received by
the cloud and produces fused features to early-exit compo-
nents for prediction. A fusion module aggregates and fuses
features of different sizes from different layers. Fused fea-
tures are better because the cloud can take advantage of all
data transmitted so far which leads to better task accuracy.
Cloud early-exit: Finally, the cloud early-exit component

generates prediction results. FLEET uses the prediction re-
sults to determine whether to stop the execution on the IoT
devices and returns the results to the IoT device if no further
execution is necessary.

Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Figure 3: Example: FLEET Pipeline on MobileNetV3.
Matching stage means the execution of the Inverted
Residual is overlapped with communication.

Example: Figure 3 shows an example of our pipeline with
the first five layers of the MobileNetV3 model. 𝐿1:5 are the dif-
ferent layers of convolutional operations or inverted residual
blocks. F1:4 shows the original feature size from each layer,
and F̃1:4 is the compact encoded feature for transmission.
At the cloud, all features available from previous layers are
fused and provided as input to the cloud early-exit compo-
nent. For example, when layer 4 is executing, the previously
received features F̃1:3 will be fused and used to generate a fi-
nal prediction. The cloud early-exit component is not limited
by compute resources. Hence it is a deeper network than a
simple fully-connected layer — ×10 on the cloud early-exit
component means there can be a large number of layers
used in the cloud to generate final predictions. If the final
prediction is sufficiently confident, it will stop the ongoing
execution at the IoT device by sending back a notification to
the IoT device.

Next, we explain these components in more detail.

3.2 Encoder
The Encoder is designed to encode the transmitted features
so that it can fit into the limited transmission opportunities
provided by the radio. As mentioned earlier, the Encoder
should be agnostic of the current radio duty-cycling parame-
ters and be designed to work irrespective of what is negoti-
ated with the recipient.

FLEET performs feature size reduction on the selected
channels in multiple tensor dimensions simultaneously and
leverages dynamic pooling to enable progressive transmission
in case of BLE packet loss.

Feature Size Reduction: Since duty-cycling restricts the
amount of data transmitted by each node, only a subset of
features Fn from layer 𝐿𝑛 can be transmitted during the ex-
ecution time of layer 𝐿𝑛+1. Therefore, the encoder needs to
reduce the feature sizes to squeeze it into available transmis-
sion opportunities.

There are many different ways to achieve this compressed
mapping; we look at a specific approach that applies to image-
based tasks: the features Fn can be represented by a three-
dimensional tensor (𝑐𝑛, 𝑠𝑛, 𝑠𝑛), where 𝑐𝑛 refers to the number
of channels while 𝑠𝑛 refers to the height/width from the 𝑛-th
layer. For simplicity, we assume the height and width is the
same size.
Since the radio transmission opportunities are quite lim-

ited, it is wasteful to encode all the intermediate results
which can be sparse. Therefore, we assume the encoder is
designed with a priori idea of the maximum size that should
be transmitted. This information is calculated based on the
execution time of each layer on the chosen platform and the
best-case duty-cycling parameters. For example, if Layer 𝐿2
takes 𝑡2 milliseconds to execute, and the BLE radio setting
is 10ms CI and 8 Packets of 251 Bytes per CI, then the maxi-
mum data amount that can be transmitted in parallel with
Layer 𝐿2’s execution is 251×4× ⌈𝑡2/10⌉ bytes. Therefore, our
design target is to reduce both width/height and depth of the
feature map to fit into this data size without performance
degradation. We note that this is not a strict limit, so for
example, if 𝑡2 is too small to transmit enough data during
connection intervals, we can wait to transmit more data at
the cost of extra transmission latency.
Mathematically, the maximum data size 𝑆𝑚𝑎𝑥

𝑛 of layer 𝐿𝑛
can be calculated by the execution time 𝑡𝑛+1 of the next layer
𝐿𝑛+1 given the BLE radio working at 𝑡𝐶𝐼 CI and packet size
𝑆𝑃𝑎𝑐𝑘𝑒𝑡

𝑆𝑚𝑎𝑥
𝑛 = 𝑆𝑃𝑎𝑐𝑘𝑒𝑡 × ⌊ 𝑡𝑛+1

𝑡𝐶𝐼
⌋ . (1)

We denote the size of feature maps F̃n of the maximum data
size to be (�̃�𝑛, �̃�𝑛, �̃�𝑛), then we have �̃�𝑛 × �̃�𝑛 × �̃�𝑛 ≤ 𝑆𝑚𝑎𝑥

𝑛 .
We can sample a series of smaller feature F̃n,1:M of the size
(�̃�𝑛, �̃�𝑛,1:𝑀 , �̃�𝑛,1:𝑀) to fit into the different duty-cycling param-
eters and packet loss rate.
Progressive Transmission: Progressive transmission is
a natural fit to deal with 1) the fact that different duty-cycling
parameters may lead to different amounts of data transmitted
2) packet loss can happen during BLE radio transmissions. In
this approach, we always encode and transmit the features
of smallest size and gradually increase the feature size until
we reach the execution latency of the next layer or the max-
imum feature size. Note that an advantage of progressive
transmission is that the IoT device does not need to explicitly
synchronize its transmission with its execution — even if

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jin Huang, Hui Guan, Deepak Ganesan

Figure 4: Illustration of Progressive Transmission of
the Features from Dynamic Pooling. The feature F̃n,1
of the shape (�̃�𝑛, �̃�𝑛,1, �̃�𝑛,1) are part the feature F̃n,2 so
that we only need to transmit the extra part(the or-
ange part) to reconstruct the feature F̃n,2 from F̃n,1. Sim-
ilarly,we only need to transmit the extra data (the blue
part) to reconstruct the feature F̃n,3 from F̃n,2.

the execution of the next layer is finished earlier than trans-
mission of features from the previous layer, the IoT devices
can simply discard the previous unsent features and start to
send the new features from the next layer. This decoupling
prevents communication and computation from blocking on
each other.

For example, when we transmit the feature Fn by possibly
encoding it into a series features F̃n,1:M of different shapes
(�̃�𝑛, �̃�𝑛,1:𝑀 , �̃�𝑛,1:𝑀), we can always start to encode and trans-
mit from the shape (�̃�𝑛, �̃�𝑛,1, �̃�𝑛,1), and stop at some shape
(�̃�𝑛, �̃�𝑛,𝑚, �̃�𝑛,𝑚).
But such a progressive transmission approach still re-

sults in extra transmission overhead. For example, origi-
nally we only need to transmit the feature F̃n,m of one shape
(�̃�𝑛, �̃�𝑛,𝑚, �̃�𝑛,𝑚); but now we need to first transmit𝑚 − 1 fea-
tures F̃n,1:m−1 of different shape (�̃�𝑛, �̃�𝑛,1:𝑚−1, �̃�𝑛,1:𝑚−1).
Dynamic Pooling: We propose a novel solution, dynamic
pooling, to fit the features into the short transmission win-
dows without incurring extra overhead. Dynamic pooling
enables the reuse of the features during progressive transmis-
sion by special design of the pooling operations.Wemake the
smaller features to be part of the larger feature. When trans-
mitting the larger feature, we don’t need to transmit from
scratch but only the difference part from the smaller features.
Figure 4 illustrates the basic idea of dynamic pooling.

Given the size of input feature map (𝑠𝑖 , 𝑠𝑖) and the size of
output feature map (𝑠𝑜 , 𝑠𝑜), we use two different kernels of
size 𝑘 and 𝑘

2 pooling the feature map where 𝑘 mod 𝑠𝑖 = 0. We
assume that there are respectively𝑚 and 𝑛 values generated
by two kernel sizes, then we have:

𝑘 ·𝑚 + 𝑘

2
· 𝑛 = 𝑠𝑖 ,

𝑚 + 𝑛 = 𝑠𝑜 . (2)

Solving the equation, we have 𝑚 =
2·𝑠𝑖
𝑘

− 𝑠𝑜 and 𝑛 =

2 · 𝑠𝑜 − 2·𝑠𝑖
𝑘
. We denote the average pooling using the kernel

of size (𝑘, 𝑘) as Pool(𝑘,𝑘) (·). Then the dynamic pooling will
pool the feature F[0:𝑠𝑖 , 0:𝑠𝑖] into a pooled feature F̃[0:𝑠𝑜 , 0:𝑠𝑜]

in the following way without overlap:

F̃[0:𝑛, 0:𝑛] = Pool(𝑘/2,𝑘/2) (F[0:
𝑘𝑛

2
, 0:

𝑘𝑛

2
])

F̃[0:𝑛, 𝑛:𝑠𝑜] = Pool(𝑘/2,𝑘) (F[0:
𝑘𝑛

2
,
𝑘𝑛

2
:𝑠𝑖])

F̃[𝑛:𝑠𝑜 , 0:𝑛] = Pool(𝑘,𝑘/2) (F[
𝑘𝑛

2
:𝑠𝑖 , 0:

𝑘𝑛

2
)

F̃[𝑛:𝑠𝑜 , 𝑛:𝑠𝑜] = Pool(𝑘,𝑘) (F[
𝑘𝑛

2
:𝑠𝑖 ,

𝑘𝑛

2
:𝑠𝑖]) (3)

Example of Dynamic Pooling: We now give an visual
example of how dynamic pooling works. Given a feature
map Fn [0:𝑠, 0:𝑠]and a kernel (𝑘, 𝑘) where 𝑘 mod 𝑠 = 0, we
generate a pooled feature map F̃n [0:𝑠/𝑘, 0:𝑠/𝑘] by averaging
within the kernel without overlap. The value of the generate
feature F̃n at the index (0, 0) will be

F̃n [0, 0] = Pool(𝑘,𝑘) (𝐹𝑛 [0:𝑘, 0:𝑘]) (4)

If we change the kernel size of the first 𝑘 column and
row from 𝑘 to 𝑘

2 , but use a kernel of size 𝑘 for the other
columns and rows, we can get a new feature map of F̃′n of
size (𝑠

𝑘
+ 1, 𝑠

𝑘
+ 1). Compared with the original generated

feature F̃n of size (𝑘, 𝑘), we have
F̃′n [𝑖 + 1, 𝑗 + 1] = F̃n [𝑖, 𝑗], ∀1 ≤ 𝑖, 𝑗 ≤ 𝑘, (5)

which means the smaller features are guaranteed to be part
of the larger features. In addition, the re-construction of the
new features will also re-use the values from smaller features,
for example, F̃′n [0, 0], F̃′n [0, 1] and F̃′n [1, 0] are transmitted
while F̃′n [1, 1] is re-constructed using F̃n [0, 0] on the cloud:

F̃′n [0, 0] = Pool(𝑘/2,𝑘/2) (𝐹𝑛 [0:𝑘/2, 0:𝑘/2]),
F̃′n [0, 1] = Pool(𝑘/2,𝑘/2) (𝐹𝑛 [0:𝑘/2, 𝑘/2:𝑘]),
F̃′n [1, 0] = Pool(𝑘/2,𝑘/2) (𝐹𝑛 [𝑘/2:𝑘, 0:𝑘/2]),
F̃′n [1, 1] = 4 × F̃n [0, 0] − F̃′n [0, 0] − F̃′n [0, 1] − F̃′n [1, 0] . (6)

Figure 5 shows an example how dynamic pooling generate
the features from (𝑠

𝑘
, 𝑠
𝑘
) to (𝑠

𝑘
+ 2, 𝑠

𝑘
+ 2). We can see that

the values from the kernel (𝑘, 𝑘)(the orange patches) are
the same and can be directly reused. The other colors are
pooled with kernels of different shapes (𝑘2 ,

𝑘
2), (

𝑘
2 , 𝑘) and

(𝑘, 𝑘2). The position information is already hard encoded
when generating the features so we have no extra overhead
to transmit any position information.

3.3 Dynamic Feature Fusion
Figure 6 shows the design of the fusion module in the FLEET
pipeline. Compared with an approach that inference using
the current layer feature, feature fusion can lead to better task
accuracy by leveraging information from previous layers.
In FLEET, the features to be fused might be of different

Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Figure 5: Example of dynamic pooling to generate fea-
tures from (𝑠

𝑘
, 𝑠
𝑘
) to (𝑠

𝑘
+ 2, 𝑠

𝑘
+ 2). The asterisk means

the average value pooled from the block will be trans-
mitted.

Figure 6: Overall design of the fusion module.

sizes or dimensions. Assume that we are fusing 𝑘 features
[F̃n−k+1, ..., F̃n] of different sizes. We first use up-sampling
operations to unify the spatial sizes of different features and
then the concatenation operation to merge these feature
tensors into one feature tensor.

F̃′i = UpSample(F̃i), 𝑖 ∈ [𝑛 − 𝑘 − 1, 𝑛],
F̃∗n = Concat([F̃′n−k+1, ..., F̃

′
n])). (7)

Finally a convolutional operation 𝑓𝑛 will be applied so that
the output channels are the same as the input channels of
the layers on the cloud.
We denote the spatial sizes as a set 𝑆 and the combina-

tions of spatial sizes from 𝑘 layers are 𝑆𝑘 . Because the feature
distribution of different spatial sizes will be different, it is
preferable to use a specific convolutional block for each
combination of spatial sizes. However, this leads to an ex-
ponential increase in training cost - fusing features from 𝑘

layers of |𝑆 | different spatial sizes can leads to |𝑆 |𝑘 combina-
tions and training cost. In our experiments, we select 𝑘 = 2
since this gives sufficiently high accuracy and reduces the
combinations and training cost.
The cloud execution is also non-blocking i.e. the cloud

model does not need to actively wait for all features to arrive;
when the new features are received, the cloud model fuses

it with the feature maps from the previous layer to get the
new inference results.

3.4 Cloud Early-Exit
Once the features transmitted from previous layers are fused,
the cloud continues execution of the base model without
modification. We denote the layers 𝐿1:𝑛 (𝑛 < 𝑁) on IoT de-
vices as a function 𝑔𝐼𝑜𝑇1:𝑛 (∗) and the cloud layers as a function
𝑔𝑐 (∗). We denote the inputs and ground truth labels as X
and 𝑦.
For radio bandwidth setting 𝑏𝑚 and 𝑘 layer fusion, the

loss function for the prediction after the transmission of the
intermediate results from the 𝑛- layer will be:

Encoder: F̃n = 𝑒𝑛 (𝑔𝐼𝑜𝑇1:𝑛 (X)),
Fusion: F̃∗n = 𝑓𝑛 (Concat(UpSample([F̃n−k+1, ..., F̃n])),

Outputs: 𝑦𝑛 = 𝑔𝑐 (F̃∗n),
Loss: 𝑙𝑛 = 𝑙𝑜𝑠𝑠 (𝑦𝑛, 𝑦), (8)

where 𝑒 and 𝑓 are the encoding and fusion functions, and
𝑙𝑜𝑠𝑠 is the loss function.
Early-Exit Trigger: To decide whether to early stop at
some layer, the cloud early-exit component uses the confi-
dence or the entropy of the prediction. Given a prediction
result 𝑦, the confidence score can be calculated by the top-1
softmax value softmax(𝑦). Early stop happens when the
confidence score is larger than a predetermined threshold.
The cloud early-exit component then sends the exit signal
back to IoT device to stop the execution.

We note that a key advantage of cloud early-exit is that the
cloud early-exit can execute many convolutional layers for
feature extraction before the prediction happens. Thus, even
if the features that have been transmitted to the cloud are
not complete, the ability to extract better features counters
the lack of fidelity in the data.

4 EVALUATION
This section evaluates FLEET against state-of-the-art early
exit-based models and partitioned execution models under a
range of BLE radio duty-cycling settings and IoT platforms.
We start by describing the datasets, experimental settings,
and baselines that we compare against.

4.1 Experiment settings
Dataset: We evaluate the FLEET pipeline primarily on
ImageNet-100 [8], which has 224 × 224 images from 100
different subclasses from ImageNet. The ImageNet size is
commonly seen on IoT devices with QVGA or VGA cameras.
For lower-end IoT platforms with too limited memory

and compute to process ImageNet images, we also show a
few results for the CIFAR-100 [23] dataset which has 32 ×

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jin Huang, Hui Guan, Deepak Ganesan

32 image inputs from 100 different classes; and from Tiny-
ImageNet [6] which has 64 × 64 images with 200 different
subclasses from ImageNet.

DNN Models: We implement the pipeline on different
backbonemodels including:MobileNetV3 [15], ResNet34 [12]
and InceptionV3 [38]. Since different datasets have differ-
ent resolutions, we modified the model structure to fit the
dataset. For MobileNetV3, we replace two inverted residual
blocks (layer 3, 14) of stride 2 with the stride 1 for CIFAR-
100; we replace one block (layer 5) of stride 2 with 1 for
Tiny-ImageNet; for InceptionV3, we remove two max pool-
ing layers for CIFAR-100; and for Tiny-ImageNet, we remove
one max pooling layer.

FLEET Pipeline: For the Encoder, we sample different
spatial sizes to prioritize transmissions across CIs. For Ima-
geNet, the spatial sizes are from 10× 10 to 28× 28with a step
size of 2; for CIFAR-100, the spatial sizes are from 3 × 3 to
8× 8; and for Tiny-ImageNet, the spatial sizes are from 6× 6
to 16 × 16 with a step size of 2. The depths of the features
to encode after each layer is chosen based on the execution
latency of the layer. For example, the execution latency of
third layer of MobileNetV3 on CIFAR-100 is roughly 3× of
that of the second layer, so the depth of the second layer will
be 3× of the first layer.

ForCloudEarly-Exit, we threshold the confidence scores
of the prediction results from each layer to determinewhether
to early stop at the current stage. The threshold is a hyper-
parameter that is profiled once for different datasets. In order
to get the best trade-off between compute efficiency and ac-
curacy, we linearly sample the thresholds from 0.1 to 0.9
at a step size 0.1. In our experiments, we use the accuracy
on validation set to determine the appropriate threshold for
each dataset.

For the datasets we work with, we find that we only need
early exits for the first 8 layers of MobileNetV2 and first 5
layers of ResNet34 and InceptionV3 because the performance
already converges to the maximum accuracy.

Local Early-Exit Baselines: We compare against three
state-of-the-art local early-exit methods: 1) BranchyNet
[39] adds early exit branches to the existing models and
jointly trains themwith weighted sum loss from all early-exit
modules; 2) Shallow-Deep Networks [21] add both early
exit modules and a specially designed feature reduction mod-
ule. It also uses variant coefficients as training proceeds so
that the early exits whose performances are poor in early
training stage will not interfere with the latter exits; 3) En-
semble [9] models are a series of models from the original
model but the number of layers are reduced to generate
predictions at different compute levels.

For these baselines, we add a series of exit points for the
models including layer 1 − 3, 5, 8, 11, 13 and the final out-
put. The layers are chosen because they are transition layers
where the spatial sizes of features are reduced. For Shallow-
Deep network, the weights for the loss function are adap-
tively tuned by its training process; for BranchyNet, we uses
0.05 for the first 2 layers, 0.1 for the layers in between and
0.4 for the final output to get rid of the interference from the
early layers. The pooling layer before the early-exit classifi-
cation head of BranchyNet and Ensemble models will pool
the features to different shapes from 4 × 4 or 2 × 2 based on
the depth of the feature.
Model Partitioning Baselines: We compare against two
IoT-cloud partition-based models as baselines: 1) CLIO [17]
transmits intermediate features from a partition point in a
progressive manner and applies multiple prediction heads
on the cloud side to offer different levels of performance; 2)
NeuroSurgeon is a baseline that is adapted from [20], which
also partitions the model. While NeuroSurgeon can adapt the
choice of partition point, it cannot adapt to dynamic changes
in bandwidth for a given partition point. Hence, we augment
it to send features of different sizes by changing the spatial
size such that it can adapt to different bandwidth conditions.

We choose the layer 5 to split the model as this is the best
partition point for MobileNetV3 [16]. The different depths
that we choose for CLIO are from 2 to 28 for MobileNetV3
and the spatial sizes that we choose for NeuroSurgeon are
the same as those used in dynamic pooling in FLEET.
Metrics: The three main metrics we evaluate are accuracy,
inference latency, and energy. Accuracy is the classification
accuracy on the selected dataset. Latency and Energy are
based on profiling on different typical IoT platforms and
radios as described below.
Implementation on IoT Platforms: We select three IoT
processors from highly resource limited to more moderately
capable – at the lower end, the ARM Cortex-M33@64MHz
on the nRF5340 MCU and at the upper end, the 32-bit Risc-
V GAP8 neural accelerator [42] @175MHz and the ARM
Cortex-A77 on Raspberry Pi [35] @200MHz (or higher).
Based on our profiling, we find that the Cortex-M33 has
the least compute ability while the compute capability of
GAP8@175MHz lies in between the Cortex-A77@200MHz
and Cortex-A77@400MHz.

We implemented our system on the three above platforms
and profiled the latency of model execution. We use TVM
and MicroTVM [34] as the backend to compile the deep
learning models into executable on different platforms work-
ing at different frequency. Then we collect the execution
latency of the deep learning models early-exit at the dif-
ferent layers for our evaluation. Due to the fact that the
Flash and RAM size on the nRF5340DK is very limited, only

Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Processor
(Platform)

Frequency
/ MHz

Power
/ mW

RAM
/ KByte

Flash
/ Mbyte

Cortex-M33
(nRF5340DK) 64 9.3 512 1

Risc-V GAP8
(GAP8) 175 16.4 100(L1)

512(L2) 64

Cortex-A77
(Raspberry
Pi)

200 -
1500

40 -
750

128(L1)
512(L2)
2GB(RAM)

32GB

Table 2: Platforms

the models with input size 32x32x3 are deployed; for other
platforms, models with ImageNet sizes are deployed.
Radios: We evaluate over the full range of duty-cycling
parameters offered by BLE shown in Table 1. The maximum
payload size of 1 Mbps and 2 Mbps PHY is 251 Bytes while
that of 125 Kbps is only 27 Bytes. The connection intervals
of BLE radios starts from 7.5ms to 4s at increments of 1.5ms.
For the packets per connection interval, we study commonly
seen options from 2 to 8 packets per CI including payloads
and acknowledgements, which means 1 to 4 payloads.

4.2 Latency advantages of FLEET
Table 3 presents the speed-ups offered by FLEET across the
above-mentioned range of BLE parameters and IoT platforms.
The columns on “Local Early Exit”, “Model Partition” and
“JPEG” summarize the benefits offered by FLEET over these
schemes individually, and the column “All” shows the region
where FLEET is better than all other methods cumulatively.
We compare FLEET with these baselines around the same
accuracy: specifically we compare with baselines at around
88% on ImageNet-100 and 68% on CIFAR-100. For each col-
umn, the “CI” sub-column shows the connection interval
regime where FLEET performs better than other baselines,
and the “Speed-up” column shows the latency speedup by
using FLEET. In addition to considering all the BLE parame-
ters, we also look at the effect of the computational capability
of the IoT device. For the Cortex-M33, we use the CIFAR-
100 dataset since resource limitations preclude processing of
larger images; all other results are for ImageNet-100.
Overall latency speedup: Let us first look at the over-
all results in the column “All”. We see that FLEET is al-
most always better than other schemes for CI parameters
between 7.5ms and ∼50-70ms (except when bandwidth is
too low). This is a very useful result since the Bluetooth SIG
recommended BLE connection parameters are in this range.
For example, iOS defaults to 30ms CI and Android defaults
to 30ms min interval and 50ms max interval (CONNEC-
TION_PRIORITY_BALANCED setting). We see that non-
trivial speedup up to 4× can be achieved by FLEET.

Having described the overall results, we now look at each
of the local and remote processing categories in more detail.
The graphs in the rest of this section show one particular
setting i.e. the Cortex-A77@200Mhz and BLE radio oper-
ating at 10ms CI, 8 Packets per CI at 1Mbps PHY running
MobileNetV3 on ImageNet-100.

FLEET vs. Local Early Exit: We now look at how FLEET
compares against state-of-art resource-optimized local early
exit baselines — Shallow-Deep, BranchyNet and Ensemble.
Table 3 (Column “Local Early Exit”) shows that FLEET

works best for low to medium CIs, and its performance in-
creases with more bandwidth and more packets per burst.
This is intuitive since longer sleeps between transmissions
would increase delay for communication, and more packets
or bandwidth would reduce communication delay.
When the CI exceeds the regime shown in Table 3, local

early-exit outperforms FLEET. When connection interval in-
creases, the performance of FLEET is affected due to increas-
ing offload delays whereas local early-exit is not affected. For
example, when CI is 100ms, local early-exit achieves 1.5×
speedup over FLEET on the Cortex-M33 (64MHz) and the
Cortex-A77 (200) MHz, and 3.3× speedup on more the more
powerful GAP8 running at 175MHz.
Figures 7 shows the latency comparison between our

method and the local-early exit baselines.We see that FLEET
achieves around 3× latency speed-up compared with base-
lines without sacrificing accuracy; the speedup can be even
higher if we can tolerate some loss of accuracy.
This performance gap highlights one of the key advan-

tages of offloading early exit computation to the cloud. Local
early-exit directly uses features from the early stage of the
deep learning model, pools them and uses them as input to a
prediction head. However, since the features from the early
stages tend to be coarse, local early-exit is unable to make
sufficiently good decisions to exit early. However, FLEET
offloads early exit computation to the cloud, hence it can use
more resources to continue to extract fine-grained features
from the early layers, which results in much better accuracy.

Figure 7: Latency of FLEET vs local early-exit.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jin Huang, Hui Guan, Deepak Ganesan

Processors
/#Pakcets /PHY

Local Early Exit Model Partition JPEG All
CI / ms Speed-Up CI / ms Speed-Up CI /ms Speed-Up CI / ms Speed-Up

Cortex-M33@64MHz 7.5 - 66 1 - 2.3x 18 - 64.5 1 - 1.2 x 18 - 100 1 - 1.7x 18 - 64.5 1 - 1.2x
Cortex-A77@200MHz 7.5 - 64.5 1 - 4.7x 7.5 - 4s 2.3 - 3.2x 7.5 - 4s 1.8 - 3.4x 7.5 - 64.5 1 - 3.1x
GAP8@175MHz 7.5 - 46.5 1 - 2.7x 7.5 - 4s 2.1 - 3.1x 7.5 - 4s 1.5 - 3.4x 7.5 - 46.5 1 - 2.6x

2 7.5 - 25.5 1 - 3.2x 7.5 - 4s 3.4 - 4.3x 7.5 - 4s 5.2 - 5.5x 7.5 - 75 1 - 3.2x
4 7.5 - 45 1 - 4.6x 7.5 - 4s 3.1 - 4.0x 7.5 - 4s 3.6 - 4.9x 7.5 - 45 1 - 4.0x
6 7.5 - 63 1 - 4.7x 7.5 - 4s 3.2 - 3.9x 7.5 - 4s 2.5 - 4.7x 7.5 - 63 1 - 3.9x
8 7.5 - 64.5 1 - 4.7x 7.5 - 4s 2.3 - 3.2x 7.5 - 4s 1.8 - 3.4x 7.5 - 64.5 1 - 3.1x

125 Kbps - - 7.5 - 4s 3.5 - 3.9x 7.5 - 4s 5.8 - 6.1x - -
500 Kbps 7.5 - 48 1 - 3.2x 7.5 - 4s 2.7 - 4.1x 7.5 - 4s 4.2 - 5.5x 7.5 - 48 1 - 3.2x
1Mbps 7.5 - 63 1 - 4.5x 7.5 - 4s 2.3 - 3.9x 7.5 - 4s 2.7 - 4.0x 7.5 - 63 1 - 3.9x
2Mbps 7.5 - 63 1 - 4.7x 7.5 - 4s 2.3 - 3.2x 7.5 - 4s 1.8 - 3.4x 7.5 - 63 1 - 3.1x

Table 3: Latency comparison of FLEET vs Local Early-Exit, Model Partition and JPEG baselines across different
parameters. Column “CI” shows the range of connection intervals where FLEET achieves better performance
than other methods i.e. has less latency. For brevity, each column reports the comparison between FLEET and
the best among the baselines in each category. For local early exit, we compare FLEET against the best of the
local methods i.e. BranchyNet, Shadow-Deep, and Ensemble (column 2). For Model Partition, we compare FLEET
against the best of CLIO and NeuroSurgeon (column 3). The empty cells represent cases where FLEET does not
achieve better performance than baselines. The Cortex-M33 is using CIFAR-100 images as input due to memory
constraints and all other results are using ImageNet images. The comparisons between various schemes is for the
same accuracy of 88% on ImageNet-100 and 68% on CIFAR-100.

FLEETvs.Model Partitioning: Wenow compare FLEET
against several model partitioning-based baselines. In col-
umn “Model Partition” in Table 3, we see that FLEET is better
than partitioned execution almost across the entire range
of CI settings with up to 4.3× speedup (slightly narrower
range for Cortex-M33). This is because while both FLEET
and model partitioning methods are impacted by increas-
ing CI, FLEET has pipelined computation and transmission,
hence it achieves better overall latency in most cases.
The reason for the gap is simply because existing model

partitioning methods execute in a sequential manner where
they need to execute the models first and then transmit
the features. In contrast, FLEET transmits in parallel with
computation thereby exiting earlier than typical model par-
titioning schemes.

Figure 8 shows amore detailed comparison between FLEET
andmodel partitioning baselines.We see that FLEET achieves
less latency overall than the baselines for the same accuracy
achieved. For example, we achieve around 5× reduction in
latency to achieve 88% accuracy on the ImageNet-100 dataset.

FLEET vs. JPEG: We now compare FLEET against fully
offloading data to the cloud for inference after compressing
it using lossy JPEG compression. We use the different quality
parameters in JPEG compression to generate the images
of different sizes to fine-tune the model. Figure 9 shows a
detailed comparison between FLEET and JPEG. We can see

Figure 8: Latency of FLEET vs. model partitioning

that JPEG performs very poorly when it has to transmit at
very low quality but it works better when higher quality data
can be transmitted. In general, we see that FLEET achieves
lower latency compared to JPEG.
Table 3 column “JPEG” shows that FLEET is almost al-

ways better than transmitting compressed data to the cloud.
Only in one instance is this not the case i.e. for the Cortex-
M33 at 64 MHz and CI at 7.5 ms, JPEG has 2.1× less latency
compared with FLEET. In all other cases, FLEET is better.
This is because compression + transmission is a sequential
process and results in significant idle time on duty-cycled ra-
dios. In contrast, FLEET uses idle time to reduce the amount
of data that needs to be transmitted. We find that FLEET

Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Figure 9: Latency of FLEET vs. jpeg

typically requires only a third of the data as JPEG-based data
compression to achieves the same accuracy.

4.3 Impact of packet losses
So far, we have assumed no packet losses, but BLE has high
packet losses, particularly when large packet sizes of more
than 100 bytes are used and when transmission occurs in all
CIs [41]. We evaluate the effect of packet loss with packet
error rate from 0% to 90% in steps of 10%. FLEET with the
dynamic pooling has the ability to downgrade to smaller
feature sizes automatically.
We briefly describe how FLEET compares against other

schemes as packet loss rate increases. For typical BLE settings
of CI=25ms, 4pkts/CI and data rate of 500Kbps, FLEET can
tolerate upto 18% packetloss before local early exit becomes
the best approach in terms of latency. When we increase
the number of packets to 8pkts/CI, FLEET is the best upto
40% error rate, and when the data rate is increased further
to 1Mbps, FLEET tolerates upto 60% error rate. In all these
cases, JPEG and partitioned execution perform worse than
both FLEET and local early exit.

4.4 Impact of compute capability

Figure 10: FLEET vs. the best of local early-exit, model
split and JPEG baselines at different compute ability
(Cortex-A77 frequency from 200MHz to 1.5 GHz). The
red curve is the latency speed-up and the blue segment
is the CI range where FLEET achieves less latency.

So far, we looked at low to medium compute capability
on IoT devices. Let us look at what happens as the compute
capability increases beyond the range shown in Table 3.
To emulate platforms with different compute capabili-

ties, we sweep through the frequency of Cortex-A77 from
200MHz to 1.5GHz with 100MHz spacing. For each setting,
we measure the CI range where FLEET is better than alter-
natives and the maximum speedup obtained.
Figure 10 shows the results. We see that the benefits of

FLEET is quite high for lower frequencies since local com-
pute is slow and cloud offload is beneficial. The benefits di-
minish at higher frequencies since local processing becomes
faster whereas the radio speed remains the same. A faster
duty-cycled radio such as 802.11ah (WiFi HaLow) may be
more appropriate for such higher frequency processors since
it can offer higher data rates than BLE (up to 80Mbps when
using 4 spatial channels).

4.5 Speedup for other models and datasets
So far, we have looked at MobileNetV3 and the ImageNet-
100 dataset. We now look at performance of FLEET on more
computationally heavy models and alternate datasets.
Performance on other models: We now look at the per-
formance of FLEET using ResNet34 and InceptionV3 as
the base model.We evaluate on the Cortex-A77@200Hz since
these are larger models that require more resources.

Table 5 show the results. We see that FLEET can general-
ize to computationally heavy models and achieve substan-
tial reduction in latency over local processing and cloud-
offloading methods.
Performance for other datasets: Wealso evaluate FLEET
on other datasets includingCIFAR-100 andTiny-ImageNet.
For CIFAR-100, we evaluate on the Cortex-M33 since the
small image size is more appropriate for MCU-class plat-
forms, and for Tiny-Imagenet, we evaluate on the Cortex-A77
since it is a medium-sized image.

Table 5 show the comparison between FLEET, local early-
exit and model partition baselines using MobileNetV3. Due
to the fact that the input size of CIFAR-100 is small(32x32x3),
the speed-up of FLEET over baselines is not substantial since
FLEET transmits small features after each layer. But on the
Tiny-ImageNet dataset which has larger input size(64x64x3),
FLEET can achieve higher latency speed-up 2.3x.

4.6 Energy Efficiency of FLEET
We now compare the energy-efficiency of various schemes.
Energy is measured as the total cost of computation and com-
munication. We calculate the energy consumption of compu-
tation in two ways: a) for the Raspberry Pi with Cortex-A77,
we profile the device and empirically measure energy con-
sumption, and b) for the Cortex-M33 and GAP8, we use

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jin Huang, Hui Guan, Deepak Ganesan

PHY / Mbps FLEET Energy / mJ Baseline Energy / mJ Efficiency

Cortex-M33@64MHz 0.125 - 2 1.57 - 1.08 4.04 2.6 - 3.7x
Cortex-A77@200MHz 0.125 - 2 1.41 - 8.11 35.81 2.5 - 4.4xLocal

Early-Exit GAP8@175MHz 0.5 - 2 1.83 - 1.04 2.26 1 - 2.1x

PHY / Mbps FLEET Energy / mJ Baseline Energy / mJ Efficiency

Cortex-M33@64MHz 0.125 - 1 1.57 - 1.08 4.15 - 1.25 1 - 2.6x
Cortex-A77@200MHz 0.125 - 2 14.15 - 8.11 36.68 - 13.44 1.6 - 2.6xModel

Partition GAP8@175MHz 0.125 - 2 7.29 - 1.04 26.05 - 1.88 3.6 - 1.8x

PHY / Mbps FLEET Energy / mJ Baseline Energy / mJ Efficiency

Cortex-M33@64MHz 0.125 - 0.5 1.57 - 1.08 7.01 - 1.25 1.1 - 4.4x
Cortex-A77@200MHz 0.125 - 0.5 14.15 - 8.11 39.65 - 6.80 2.8 - 0.8xJPEG
GAP8@175MHz 0.125 - 2 7.29 - 1.04 41.20 - 1.68 5.6 - 1.6x

PHY / Mbps FLEET Energy / mJ Baseline Energy / mJ Efficiency

Cortex-M33@64MHz 0.125 - 0.5 1.57 - 1.08 1.51 - 1.17 1 - 1.4x
Cortex-A77@200MHz 0.125 - 0.5 14.15 - 8.11 35.81 - 6.80 2.5 - 0.8xAll
GAP8@175MHz 0.5 - 2 1.83 - 1.04 2.26 - 1.68 1 - 1.6x

Table 4: The comparison of FLEET vs Local Early-Exit, Model Partition and JPEG baselines on the energy per
inference across different processors. The Cortex-M33 is using CIFAR-100 image sizes due to memory constraints
and all other results are using ImageNet image sizes.PHYmeans the range of physical layer throughputs in Mbps
which FLEET is better and the Saving the range of energy saving that FLEET could achieve. In each category,
FLEET is compared against the best baseline.

Models All
CI / ms Speed-up

ResNet34 7.5 - 52.5 1 - 4.5x
InceptionV3 7.5 - 49.5 1 - 4.2x

Datasets All
CI / ms Speed-up

CIFAR-100 18 - 64.5 1 - 1.2x
Tiny-ImageNet 7.5 - 19.5 1 - 2.3x

Table 5: FLEET vs Local Early-Exit, Model Partition
and JPEG. The comparison across the different mod-
els is on ImageNet-100 and the comparison across the
different datasets is using MobileNetV3. The CIFAR-
100 results are on Cortex-M33@64MHz and the Tiny-
ImageNet results are on Cortex-A77@MHz.

numbers provided by the datasheet to estimate energy con-
sumption. The energy consumption for Bluetooth low energy
is based on the highly detailed nRF Official Energy Profiler
[4], which includes the energy cost of pre-processing, crystal
ramp-up, radio start, radio TX, radio RX, switch, standby,
and post-processing per CI. We use this to obtain the en-
ergy consumption of BLE under the different configurations.
Among the BLE parameters, the physical layer bandwidth
affects energy consumption the most since it changes the

cost of using the radio (CI mainly affects latency), hence we
compare for different PHY layer bandwidth settings.

Table 4 shows the results. We see that for lower end plat-
forms like the Cortex-M33 on nRF5340DK, FLEET is as ef-
ficient as other schemes for low to medium bandwidth (be-
tween 125kbps and 750kbps). Since computational capability
is low on this platform, compressed data transmission via
JPEG performs best at higher bitrates. For faster processors
such as the Cortex-A77, FLEET saves energy for low band-
width. After about 500kbps, JPEG is more efficient. This is
because compute power consumption is about 5× greater
than the BLE radio power consumption, hence savings in
data transmission size achieved by FLEET is not as high
as the added energy cost of processing. Interestingly, we
see energy benefits on the GAP8 even though the GAP8 is
slightly more powerful than the Cortex-A77@200MHz. This
is because the GAP8 is a neural accelerator and is much more
efficient than the Cortex-A77 for DNNs (as shown in Table 2).
So, we conclude that on low-end MCUs and optimized neu-
ral processors, FLEET can be expected to provide energy
savings over alternate approaches.

4.7 Case study: Visual Wake Word
We implemented an end-to-end use case of FLEET inference
pipeline for detecting visual wake words. This is a common
use-case for low-power IoT platforms which wakeup upon

Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

detecting whether a target of interest is present in the scene.
If so, it triggers post-processing (e.g. security alarm) or in-
teraction (e.g. smart doorbell). In this case study, we choose
three sets of visual wake-up words from the ImageNet-100
dataset to mimic classes typically detected by lawn or back-
yard cameras — vehicles (ambulance, trucks, etc.), pets (dif-
ferent breeds of dogs and cats), and animals (snakes, coyotes
etc.). We uses ONNX runtime to execute the IoT model on
the Raspberry Pi running at 0.5 GHz and deploy the different
clouds models on a laptop. We use PyBluez and Gattlib to
transmit the features which after compression via gzip.

The overall accuracy of detecting visual wake-up is 93.96%
and the average latency is 48.8ms, 1.6× less than local early-
exit method which takes 78.6ms for the same accuracy. This
is because for most of the data cases, FLEET early stops
within the first 3 layers with cloud-assistance whereas local
early-exit executes until layer 5.

5 RELATEDWORK
Many different approaches have been proposed to enable
execution of DNNs on low-power embedded platforms. We
focus on three most relevant directions, partitioned execu-
tion, early exit, and model compression. None of these ap-
proaches have been designed to work with or evaluated on
duty-cycled radios.
Partitioned Execution: Partitioned execution aims to
partition a DNN so that local device processes only part of
the model execution and the rest is offloaded to other devices
or clouds. One common problem in partitioned execution
is to find out the best partition point given a DNN model.
[20, 40] profile the energy consumption and total latency of
the model to find out the best point to partition the model.
[27] leverages the quantization techniques to find the best
partition point. [10] compares different ways in which IoT
devices and cloud can cooperate including: local only, cloud
only and combined and found out that the local or cloud
only is not the best solution in terms of energy or latency.

Meanwhile, some works [5, 7, 17, 18] pay attention to the
intermediate features when split the models across the edge
and cloud. [5, 7] utilize the lossy compression techniques
to compress the intermediate features. [17] enables the fea-
tures robust to the network dynamics which can affect the
performance of split models on the clouds. [18] leverages
the dropout layers to fit the intermediate features into the
packet loss scenarios.
Early Exit: Early exit reduces the compute cost of the
model for less energy consumption and execution latency.
[39] introduces the initial idea of early exit to make the deep
learning models smaller. [43] mentioned the two different
inference paradigm in early-exit methods: one is the input
adaptive inference where only one early-exit and subnet will

be chosen for the best energy or latency; the other is re-
sources adaptive inference where the network will continue
to generate the "anytime" predictions until the final output.
[21] frames the early-exit as a solution to the overthinking
problem of the deep learning models. The overthinking prob-
lem refers to that correct results are already achieved before
the final layer of the model, which means a waste of latency
and energy to continue the execution.
Model Compression: Other ways to deploy the deep
learning models on resource-constrained devices include
model compression, knowledge distillation, and specialized
networks, all of which targets at a smaller compute and are
usually orthogonal to the two aforementioned directions.
Model pruning [11] and model quantization [19, 29] tech-
niques are generic and can be applied to both the partitioned
execution and early-exit methods. They either reduces the
number of the neurons in the models or the number of the
bits of the feature representation to achieve less compute.
Knowledge Distillation [14, 28] leverages the features from
the larger and deeper "teacher" models to train smaller and
shallower "student" models by forcing the student models to
learn and capture the distribution of the features from the
teacher models. Some other works [26, 31] focus on train-
ing dynamic networks that can adapt to input and contexts
during inference by executing different sub-networks.

6 CONCLUSION
In conclusion, our work in this paper introduces a new idea,
cloud offload of early exit computation, to enable a powerful
new paradigm for IoT-cloud inference that aligns with the
duty-cycled operation of IoT radios. We address a number
of technical challenges in designing such a cloud-offload
based early-exit system (called FLEET) and show that this
approach has substantial performance benefits by evaluating
FLEET extensively across radio duty-cycling settings, differ-
ent datasets, and multiple platforms. Our approach can be
an important piece of the puzzle for deploying complex deep
learning models on resource-constrained IoT platforms.

ACKNOWLEDGMENTS
The research reported in this paper was sponsored in part
by the CCDC Army Research Laboratory (ARL) under Coop-
erative Agreement W911NF-17-2-0196 (ARL IoBT CRA) and
by National Science Foundation under Grant No. 1719386
and No. 1815347. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the ARL, NSF or the U.S. Government.
The U.S. Government is authorized to reproduce and distrib-
ute reprints for Government purposes notwithstanding any
copyright notation herein.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jin Huang, Hui Guan, Deepak Ganesan

REFERENCES
[1] Arm cortex-a77. https://www.arm.com/products/silicon-ip-cpu/

cortex-a/cortex-a77.
[2] Arm cortex-m33. https://developer.arm.com/Processors/Cortex-M33.
[3] Maximize ble throughput. https://punchthrough.com/maximizing-ble-

throughput-on-ios-and-android/.
[4] nrf online power profiler. https://devzone.nordicsemi.com/power/w/

opp.
[5] Hyomin Choi and Ivan V Bajić. Deep feature compression for collabo-

rative object detection. In 2018 25th IEEE International Conference on
Image Processing (ICIP), pages 3743–3747. IEEE, 2018.

[6] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled
variant of imagenet as an alternative to the cifar datasets. arXiv preprint
arXiv:1707.08819, 2017.

[7] Robert A Cohen, Hyomin Choi, and Ivan V Bajić. Lightweight compres-
sion of neural network feature tensors for collaborative intelligence.
In 2020 IEEE International Conference on Multimedia and Expo (ICME),
pages 1–6. IEEE, 2020.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009.

[9] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A
survey on ensemble learning. Frontiers of Computer Science, 14(2):241–
258, 2020.

[10] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud
Pedram. Jointdnn: An efficient training and inference engine for
intelligent mobile cloud computing services. IEEE Transactions on
Mobile Computing, 2019.

[11] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[13] Himax WE-I Plus EVB Endpoint AI Development Board. https://www.
sparkfun.com/products/17256.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[15] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
1314–1324, 2019.

[16] Jian Huang, Anirudh Badam, Ranveer Chandra, and Edmund B.
Nightingale. Weardrive: Fast and energy-efficient storage for wear-
ables. In 2015 USENIX Annual Technical Conference (USENIX ATC 15),
pages 613–625, Santa Clara, CA, July 2015. USENIX Association.

[17] Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin Marlin,
and Heesung Kwon. Clio: Enabling automatic compilation of deep
learning pipelines across iot and cloud. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking,
pages 1–12, 2020.

[18] Sohei Itahara, Takayuki Nishio, and Koji Yamamoto. Packet-loss-
tolerant split inference for delay-sensitive deep learning in lossy wire-
less networks. arXiv preprint arXiv:2104.13629, 2021.

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2704–2713, 2018.

[20] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. ACM SIGARCH Com-
puter Architecture News, 45(1):615–629, 2017.

[21] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep
networks: Understanding and mitigating network overthinking. In
International Conference on Machine Learning, pages 3301–3310. PMLR,
2019.

[22] Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal
Mukhopadhyay. Edge-host partitioning of deep neural networks with
feature space encoding for resource-constrained internet-of-things
platforms. In 2018 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), pages 1–6. IEEE, 2018.

[23] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian
institute for advanced research).

[24] Liangzhen Lai and Naveen Suda. Enabling deep learning at the lot
edge. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–6. IEEE, 2018.

[25] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leon-
tiadis, and Nicholas D Lane. Spinn: synergistic progressive inference
of neural networks over device and cloud. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking,
pages 1–15, 2020.

[26] Ilias Leontiadis, Stefanos Laskaridis, Stylianos I Venieris, and
Nicholas D Lane. It’s always personal: Using early exits for efficient
on-device cnn personalisation. In Proceedings of the 22nd International
Workshop on Mobile Computing Systems and Applications, pages 15–21,
2021.

[27] Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao, and Xiaob-
ing Feng. Auto-tuning neural network quantization framework for
collaborative inference between the cloud and edge. In International
Conference on Artificial Neural Networks, pages 402–411. Springer, 2018.

[28] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. Learning small-
size dnn with output-distribution-based criteria. In Fifteenth annual
conference of the international speech communication association, 2014.

[29] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan
Klein, and Joey Gonzalez. Train big, then compress: Rethinking model
size for efficient training and inference of transformers. In International
Conference on Machine Learning, pages 5958–5968. PMLR, 2020.

[30] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. Memory-
efficient patch-based inference for tiny deep learning. Advances in
Neural Information Processing Systems, 34, 2021.

[31] Sicong Liu, Bin Guo, Ke Ma, Zhiwen Yu, and Junzhao Du. Adaspring:
Context-adaptive and runtime-evolutionary deep model compression
for mobile applications. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 5(1):1–22, 2021.

[32] Zihao Liu, Tao Liu, Wujie Wen, Lei Jiang, Jie Xu, Yanzhi Wang, and
Gang Quan. Deepn-jpeg: a deep neural network favorable jpeg-based
image compression framework. In Proceedings of the 55th Annual
Design Automation Conference, pages 1–6, 2018.

[33] Arnab NeelimMazumder, JianMeng, Hasib-Al Rashid, Utteja Kallakuri,
Xin Zhang, Jae-sun Seo, and Tinoosh Mohsenin. A survey on the
optimization of neural network accelerators for micro-ai on-device
inference. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 2021.

[34] microTVM: TVM on bare-metal. https://tvm.apache.org/docs/topic/
microtvm/index.html.

[35] Raspberry Pi. Raspberry pi 4 model b. online].(https://www. raspberrypi.
org, 2015.

[36] S32R2X: Microcontrollers for High-Performance Radar. https:
//www.nxp.com/products/processors-and-microcontrollers/power-
architecture/s32r-radar-mcus/s32r26-and-s32r27-microcontrollers-

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77
https://developer.arm.com/Processors/Cortex-M33
https://punchthrough.com/maximizing-ble-throughput-on-ios-and-android/
https://punchthrough.com/maximizing-ble-throughput-on-ios-and-android/
https://devzone.nordicsemi.com/power/w/opp
https://devzone.nordicsemi.com/power/w/opp
https://www.sparkfun.com/products/17256
https://www.sparkfun.com/products/17256
https://tvm.apache.org/docs/topic/microtvm/index.html
https://tvm.apache.org/docs/topic/microtvm/index.html
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/s32r-radar-mcus/s32r26-and-s32r27-microcontrollers-for-high-performance-radar:S32R2X
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/s32r-radar-mcus/s32r26-and-s32r27-microcontrollers-for-high-performance-radar:S32R2X
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/s32r-radar-mcus/s32r26-and-s32r27-microcontrollers-for-high-performance-radar:S32R2X
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/s32r-radar-mcus/s32r26-and-s32r27-microcontrollers-for-high-performance-radar:S32R2X

Re-thinking computation offload for efficient inference on IoT devices with duty-cycled radios ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

for-high-performance-radar:S32R2X.
[37] Wenqi Shi, Yunzhong Hou, Sheng Zhou, Zhisheng Niu, Yang Zhang,

and Lu Geng. Improving device-edge cooperative inference of deep
learning via 2-step pruning. arXiv preprint arXiv:1903.03472, 2019.

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[39] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Branchynet: Fast inference via early exiting from deep neural networks.
In 2016 23rd International Conference on Pattern Recognition (ICPR),
pages 2464–2469. IEEE, 2016.

[40] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Distributed deep neural networks over the cloud, the edge and end
devices. In 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), pages 328–339. IEEE, 2017.
[41] Vishal Varun Tipparaju, Kyle R Mallires, Di Wang, Francis Tsow, and

Xiaojun Xian. Mitigation of data packet loss in bluetooth low energy-
based wearable healthcare ecosystem. Biosensors, 11(10):350, 2021.

[42] https://greenwaves-technologies.com/gap8-product/. GAP8: Ultra-
low power, always-on processor for embedded artificial intelligence.

[43] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan Nguyen,
Richard Baraniuk, Zhangyang Wang, and Yingyan Lin. Dual dynamic
inference: Enabling more efficient, adaptive, and controllable deep
inference. IEEE Journal of Selected Topics in Signal Processing, 14(4):623–
633, 2020.

[44] Pete Warden and Daniel Situnayake. Tinyml: Machine learning with
tensorflow lite on arduino and ultra-low-power microcontrollers. O’Reilly
Media, 2019.

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/s32r-radar-mcus/s32r26-and-s32r27-microcontrollers-for-high-performance-radar:S32R2X
https://greenwaves-technologies.com/gap8-product/

	Abstract
	1 Introduction
	2 Case for FLEET
	3 Design of FLEET
	3.1 Overview
	3.2 Encoder
	3.3 Dynamic Feature Fusion
	3.4 Cloud Early-Exit

	4 Evaluation
	4.1 Experiment settings
	4.2 Latency advantages of FLEET
	4.3 Impact of packet losses
	4.4 Impact of compute capability
	4.5 Speedup for other models and datasets
	4.6 Energy Efficiency of FLEET
	4.7 Case study: Visual Wake Word

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

